
Kappa4310Ard User Manual

1/17 ISDOC130B, Revised June 2025
 Submit Feedback

Kappa4310Ard
IS4310 Arduino Shield

Presentation
The Kappa4310Ard is an evaluation board for the IS4310 Modbus RTU Slave stack chip. It enables engineers to

easily evaluate the IS4310 without the need for soldering or developing their own prototype—offering a ready-to-

use solution. The board features an RGB LED and a potentiometer to simulate an actuator and a sensor.

Designed as a shield with the Arduino form factor, the Kappa4310Ard benefits from its widespread popularity,

ensuring compatibility with various microcontroller boards, including Arduino and STM32 Nucleo Boards, among

others.

The board features an RS485 electrical interface and includes two daisy-chained RJ45 connectors for

seamless integration.

The IS4310 is an ideal solution for ensuring Modbus protocol timing constraints, reducing CPU load, and

eliminating the need for dedicated pins. It includes 500 Holding Registers for engineers to use and supports

Function Codes 3 (0x03), 6 (0x06), and 16 (0x10).

Shield Characteristics

Modbus Characteristics

Supported Function Codes: 3 (0x03) - Read Holding Registers
6 (0x06) - Write Single Register
16 (0x10) - Write Multiple Registers

Holding Registers: 500

Operating Mode: RTU

Electrical Interface: RS485

Default Modbus Configuration: 19200

Electrical Characteristics

I2C Compatible Voltage Levels 3.3V and 5V

Kappa4310Ard User Manual

2/17 ISDOC130B, Revised June 2025
 Submit Feedback

Product Selection Guide

 Part Number
Form

Factor
Physical

Layer
Stack Description

O
n

ly
 S

ta
c

k

IS
4
3

1
0
-S

8

SO8N
UART
3.3V

Modbu
s RTU
Server

Modbus RTU Slave Stack Chip.

S
ta

c
k

 w
it

h
 P

h
y

s
ic

a
l
L

a
y

e
r IS

4
3

1
0

-4
8
5
M

2

Castellated
Holes
Module

RS485
Modbus
RTU
Server

IS4310 with RS485 Transceiver.

Industrial communications.

IS
4
3

1
0
-I

S
O

4
8

5
M

6

Castellated
Holes
Module

Isolated
RS485

Modbus
RTU
Server

IS4310 with Isolated RS485
Transceiver.

The isolation offers more robust
communications and longer RS485
bus distances.

IS
4
3

1
0
-2

3
2
M

4

Castellated
Holes
Module

RS232
Modbus
RTU
Server

IS4310 with RS232 Transceiver.

E
v
a
lu

a
ti

o
n

 B
o

a
rd

s

K
a
p

p
a
4
3

1
0
R

a
s
p

Raspberry Pi
Compatible

RS485
Modbus
RTU Server

IS4310 Evaluation Board with
RS485 Transceiver.

Compatible with Raspberry Pi

K
a
p

p
a
4
3

1
0
A

rd

Arduino
Compatible

RS485
Modbus
RTU Server

IS4310 Evaluation Board with
RS485 Transceiver.

Compatible with Arduino

Kappa4310Ard User Manual

3/17 ISDOC130B, Revised June 2025
 Submit Feedback

1. Description

1.1. General Description

The core of the Kappa4310Ard Modbus Shield is the IS4310 I2C Modbus RTU Server chip, which is connected to

an RS485 transceiver. This transceiver interfaces with the daisy-chained RJ45 connectors. Since the connectors

are daisy-chained, they are functionally identical—connecting the Modbus master to either one makes no

difference.

The IS4310 I2C-Serial Interface connects to the I2C pins of the shield. The shield includes a jumper that allows

selection of the I2C pull-up voltage: 5V, 3.3V, or Floating. The Floating option is useful when the pull-up resistors

are located outside the Kappa4310Ard.

It is crucial to ensure that pull-up resistors are present either on the shield or elsewhere in the circuit. Without pull-

up resistors, the I2C-Serial Interface will not function.

Since the IS4310 is 5V tolerant, it can operate with I2C pull-up voltages of 5V and with transceivers powered at

5V. Using 5V transceivers provides better noise immunity and allows for longer bus distances.

The Shield has 3 LEDs. The Rx yellow LED will blink on received data, and Tx yellow LED will blink on the IS4310

answer. The Power green LED will indicate that the board has detected power. Please note that the board requires

both 3.3V and 5V to operate.

A potentiometer is placed on the board to provide a software variable that can be easily adjusted. By reading the

analog value of the potentiometer and storing it in a Holding Register, you can continuously monitor the changes

on the Modbus Master in real time as you adjust the potentiometer's position. This is a typical application for

Modbus sensor development. The output voltage of the potentiometer ranges from 0V to 3.3V.

To develop an actuator, an RGB LED is placed on the board to display the state of Modbus Holding Registers. For

example, you can create a traffic light simulation: write a program that reads values from three Holding Registers

and adjusts the PWM of each LED accordingly. This is a typical application for Modbus actuator development.

Kappa4310Ard User Manual

4/17 ISDOC130B, Revised June 2025
 Submit Feedback

User RGB LED

User Potentiometer

I2C Speed Selector
Jumpers

I2C Pull-Up
Voltage Selector
Jumper

RJ45 Connectors

for the Modbus

RS485 RTU

communications

Power LED

Receiving Data and

Transmitting Data

LEDs

Kappa4310Ard User Manual

5/17 ISDOC130B, Revised June 2025
 Submit Feedback

1.2. Module Pinout

Name Type Description

NC Not Connected
These pins have no electrical connection.
They can be used by other shields or by your own proposal.

3.3V 3.3V Power In
The shield needs 3.3V and 5V to operate.

5V 5V Power In

GND Ground

Ground reference.
GND is connected to the “Common” of the RS485 bus.
GND is NOT connected to the shield of the RJ45 connector. Refer to section “Bus
Topology” for more details.

Vin
Optional
(Power In)

This power method is optional and is only for advanced users.

Vin pin connects to the pin 7 (“Bus Power Supply”) of the RJ45. This allows the Arduino
and the Kappa4310Ard to be self-powered from the bus power.

A0 Analog User potentiometer for prototyping proposals. The output voltage ranges from 0V to 3.3V.

SCL
and
SDA

Open Drain
5V Tolerant

SCL and SDA pin of the IS4310 I2C-Serial Interface pins.
Ensure the proper jumper pull-up configuration on the shield:

• Placing the jumper on 3V3 sets the SCL and SDA pull-up voltage to 3.3V.

• Placing the jumper on 5V sets the SCL and SDA pull-up voltage to 5V.

• Leaving the jumper off leaves SCL and SDA floating. This option is useful when pull-
up resistors are located elsewhere in the circuit.

9 Red LED

User RGB LED for prototyping proposals. 10 Green LED

11 Blue LED

Kappa4310Ard User Manual

6/17 ISDOC130B, Revised June 2025
 Submit Feedback

1.3. RJ45 Connectors

Typical Modbus Serial Line connectors include Screw Terminals, RJ45, and D-Sub 9-pin (commonly known as

DB9), among others. The device-side connector must be female, while the cable-side connector must be male.

When selecting a RJ45 cable, ensure it has shield and make sure to connect the cable shield to the connector

shield to ensure proper electrical continuity across all cable shields on the bus.

Do not connect the shield to the Common. All cable shields should be connected to Common and Protective Ground

at a single point for the entire bus, ideally at the master device.

Optionally, power can be supplied to your system through the pin 7 of the RJ45 connector.

RJ45 Connector for RS485 Modbus

1: NC

2: NC

3: NC

4: B (D1)

5: A (D0)

6: NC

7: Bus Power Supply (optional)

8: Common

Shield: Cable Shield

Attention!
The RJ45 connector is intended for the Modbus RS485 bus and
must not be connected to an Ethernet network. Connecting it to an
Ethernet network may cause damage to Ethernet devices or this
device.

Kappa4310Ard User Manual

7/17 ISDOC130B, Revised June 2025
 Submit Feedback

2. Bus Recommendations

2.1. Bus Topology

In an RS485 setup without a repeater, a single trunk cable runs through the system, with devices connected in a

daisy-chain manner. Short cables derivations (stubs) are also allowed but not recommended. Keep the derivation

distance as short as possible. Other topologies are not allowed.

Kappa4310Ard User Manual

8/17 ISDOC130B, Revised June 2025
 Submit Feedback

2.2. Cable Wiring

Kappa4310Ard User Manual

9/17 ISDOC130B, Revised June 2025
 Submit Feedback

3. Firmware Implementation Guide

3.1. Arduino Example

#include <Wire.h>

void writeHoldingRegister(uint16_t holdingRegisterAddress, uint16_t data) {

 Wire.beginTransmission(0x11); // This is the I2C Chip Address of the IS4310. Never changes.

 // A Holding Register address is 16-bits long, so we need to write 2 bytes to indicate the address.

 Wire.write((holdingRegisterAddress >> 8) & 0xFF); // Send high 8-bits of the Holding Register Address we want to write.

 Wire.write(holdingRegisterAddress & 0xFF); // Send low 8-bits of the Holding Register Address we want to write.

 // A Holding Register data register is 16-bits long. So we need to write 2 bytes to make a full Holding Register Write:

 Wire.write((data >> 8) & 0xFF); // Send high 8-bits of the data we want to write to the Holding Register.

 Wire.write(data & 0xFF); // Send low 8-bits of the data we want to write to the Holding Register.

 Wire.endTransmission();

}

uint16_t readHoldingRegister(uint16_t holdingRegisterAddress) {

 uint16_t result; // This is the variable where the read data will be saved.

 Wire.beginTransmission(0x11); // This is the I2C Chip Address of the IS4310. Never changes.

 // A Holding Register address is 16-bits long, so we need to write 2 bytes to indicate the address.

 Wire.write((holdingRegisterAddress >> 8) & 0xFF); // Send high 8-bits of the Holding Register Address we want to read.

 Wire.write(holdingRegisterAddress & 0xFF); // Send low 8-bits of the Holding Register Address we want to read.

 Wire.endTransmission(false);

 // A Holding Register data register is 16-bits long. So we need to read 2 bytes to make a full Holding Register Read:

 Wire.requestFrom(0x11, 2); // From the IS4310, request 2 bytes (2 bytes make a full Holding Register).

 result = Wire.read(); // Read the first byte.

 result = result << 8; // Make space for the second byte.

 result = result | Wire.read(); // Read the second byte.

Kappa4310Ard User Manual

10/17 ISDOC130B, Revised June 2025
 Submit Feedback

 return result; // Return the read 16-bit register.

}

void setup() {

 uint16_t ModbusSlaveID;

 Wire.begin(); // Initialize the I2C.

 Serial.begin(9600); // Initialize the Serial for the prints.

 // The Modbus Slave ID is stored in the Holding Register Address 500 of the IS4310, let's read it:

 ModbusSlaveID = readHoldingRegister(500);

 // Let's print the read Modbus Slave ID:

 Serial.println("");

 Serial.print("The Modbus Slave Address is: ");

 Serial.println(ModbusSlaveID);

}

void loop() {

 uint16_t humidity = 47; // Let's imagine a humidity sensor that reads a level of 47% RH.

 // Let's write the humidity to the Holding Register Address 0:

 writeHoldingRegister(0, humidity);

 delay(1000);

}

Kappa4310Ard User Manual

11/17 ISDOC130B, Revised June 2025
 Submit Feedback

3.2. STM32 Example

The following code is an abstraction of the main.c file from the ISXMPL4310ex9 example. All external HAL routines and function calls have been removed for clarity.

You can download the full STM32 project from the IS4310 product page.

This example demonstrates:

1. How to read a potentiometer (simulating a sensor) and store its state in Holding Register 0.

2. How to control an RGB LED (simulating an actuator) using GPIO pins based on values in Holding Registers 1, 2, and 3.

uint16_t readHoldingRegister(uint16_t registerAdressToRead) {

 uint8_t IS4310_I2C_Chip_Address; // This variable stores the I2C chip address of the IS4310.

 IS4310_I2C_Chip_Address = 0x11; // The IS4310's I2C address is 0x11.

 // The STM32 HAL I2C library requires the I2C address to be shifted left by one bit.

 // Let's shift the IS4310 I2C address accordingly:

 IS4310_I2C_Chip_Address = IS4310_I2C_Chip_Address << 1;

 // The following array will store the read data.

 // Since each holding register is 16 bits long, reading one register requires reading 2 bytes.

 uint8_t readResultArray[2];

 // This variable will contain the final result:

 uint16_t readResult;

 /*

 * This is the HAL function to read from an I2C memory device. The IS4310 is designed to operate as an I2C memory.

 *

 * HAL_I2C_Mem_Read parameters explained:

 * 1. &hi2c1: This is the name of the I2C that you're using. You set this in the CubeMX. Don't forget the '&'.

 * 2. IS4310_I2C_Chip_Address: The I2C address of the IS4310 (must be left-shifted).

 * 3. registerAdressToRead: The holding register address to read from the IS4310.

 * 4. I2C_MEMADD_SIZE_16BIT: You must indicate the memory addressing size. The IS4310 memory addressing is 16-bits.

 * This keyword is an internal constant of HAL libraries. Just write it.

 * 5. readResultArray: An 8-bit array where the HAL stores the read data.

 * 6. 2: The number of bytes to read. Since one holding register is 16 bits, we need to read 2 bytes.

 * 7. 1000: Timeout in milliseconds. If the HAL fails to read within this time, it will skip the operation

 * to prevent the code from getting stuck.

 */

 HAL_I2C_Mem_Read(&hi2c1, IS4310_I2C_Chip_Address, registerAdressToRead, I2C_MEMADD_SIZE_16BIT, readResultArray, 2, 1000);

 // Combine two bytes into a 16-bit result:

 readResult = readResultArray[0];

 readResult = readResult << 8;

 readResult = readResult | readResultArray[1];

https://inacks.com/is4310

Kappa4310Ard User Manual

12/17 ISDOC130B, Revised June 2025
 Submit Feedback

 return readResult;

}

void writeHoldingRegister(uint16_t registerAdressToWrite, uint16_t value) {

 uint8_t IS4310_I2C_Chip_Address; // I2C address of IS4310 chip (7-bit).

 IS4310_I2C_Chip_Address = 0x11; // IS4310 I2C address is 0x11 (7-bit).

 // STM32 HAL expects 8-bit address, so shift left by 1:

 IS4310_I2C_Chip_Address = IS4310_I2C_Chip_Address << 1;

 // The HAL library to write I2C memories needs the data to be in a uint8_t array.

 // So, lets put our uint16_t data into a 2 registers uint8_t array.

 uint8_t writeValuesArray[2];

 writeValuesArray[0] = (uint8_t) (value >> 8);

 writeValuesArray[1] = (uint8_t) value;

 /*

 * This is the HAL function to write to an I2C memory device. To be simple and easy to use, the IS4310 is designed to operate as an I2C

memory.

 *

 * HAL_I2C_Mem_Write parameters explained:

 * 1. &hi2c1: This is the name of the I2C that you're using. You set this in the CubeMX. Don't forget the '&'.

 * 2. IS4310_I2C_Chip_Address: The I2C address of the IS4310 (must be left-shifted).

 * 3. registerAdressToWrite: The holding register address of the IS4310 we want to write to.

 * 4. I2C_MEMADD_SIZE_16BIT: You must indicate the memory addressing size. The IS4310 memory addressing is 16-bits.

 * This keyword is an internal constant of HAL libraries. Just write it.

 * 5. writeValuesArray: An 8-bit array where we store the data to be written by the HAL function.

 * 6. 2: The number of bytes to write. Since one holding register is 16 bits, we need to write 2 bytes.

 * 7. 1000: Timeout in milliseconds. If the HAL fails to write within this time, it will skip the operation

 * to prevent the code from getting stuck.

 */

 HAL_I2C_Mem_Write(&hi2c1, IS4310_I2C_Chip_Address, registerAdressToWrite, I2C_MEMADD_SIZE_16BIT, writeValuesArray, 2, 1000);

}

while (1) {

 // This will store the potentiometer value:

 uint16_t potentiometerValue;

 // This will store the read value of the Holding Registers 1, 2 and 3:

 uint16_t holdingRegister1;

 uint16_t holdingRegister2;

 uint16_t holdingRegister3;

 // Read Holding Registers 1, 2 and 3:

 holdingRegister1 = readHoldingRegister(1);

 holdingRegister2 = readHoldingRegister(2);

 holdingRegister3 = readHoldingRegister(3);

 // If the value of each read Holding register is different from 0,

 // let's turn on the corresponding LED:

Kappa4310Ard User Manual

13/17 ISDOC130B, Revised June 2025
 Submit Feedback

 if (holdingRegister1 >= 1) {

 HAL_GPIO_WritePin(RGB_Red_GPIO_Port, RGB_Red_Pin, GPIO_PIN_SET);

 } else {

 HAL_GPIO_WritePin(RGB_Red_GPIO_Port, RGB_Red_Pin, GPIO_PIN_RESET);

 }

 if (holdingRegister2 >= 1) {

 HAL_GPIO_WritePin(RGB_Green_GPIO_Port, RGB_Green_Pin, GPIO_PIN_SET);

 } else {

 HAL_GPIO_WritePin(RGB_Green_GPIO_Port, RGB_Green_Pin, GPIO_PIN_RESET);

 }

 if (holdingRegister3 >= 1) {

 HAL_GPIO_WritePin(RGB_Blue_GPIO_Port, RGB_Blue_Pin, GPIO_PIN_SET);

 } else {

 HAL_GPIO_WritePin(RGB_Blue_GPIO_Port, RGB_Blue_Pin, GPIO_PIN_RESET);

 }

 /*

 * Read ADC value from potentiometer (0-4095),

 * and write it to Holding Register 0.

 */

 HAL_ADC_Start(&hadc1); // Start the HAL ADC

 HAL_ADC_PollForConversion(&hadc1, 400); // Perform an ADC read

 // Get the ADC value:

 potentiometerValue = HAL_ADC_GetValue(&hadc1);

 // Store the ADC value to the Holding Register 0:

 writeHoldingRegister(0, potentiometerValue);

 // Stop the HAL ADC

 HAL_ADC_Stop(&hadc1);

}

Kappa4310Ard User Manual

14/17 ISDOC130B, Revised June 2025
 Submit Feedback

4. Schematic

Kappa4310Ard User Manual

15/17 ISDOC130B, Revised June 2025
 Submit Feedback

Content

Presentation ... 1

Product Selection Guide .. 2

1. Description ... 3

1.1. General Description 3

1.2. Module Pinout .. 5

1.3. RJ45 Connectors ... 6

2. Bus Recommendations 7

2.1. Bus Topology ... 7

2.2. Cable Wiring .. 8

3. Firmware Implementation Guide 9

3.1. Arduino Example ... 9

3.2. STM32 Example .. 11

4. Schematic ... 14

Content ... 15

Appendix .. 16

Revision History .. 16

Documentation Feedback 16

Sales Contact .. 16

Customization ... 16

Independence and Trademarks Notice 16

Disclaimer ... 17

Kappa4310Ard User Manual

16/17 ISDOC130B, Revised June 2025
 Submit Feedback

Appendix

Revision History

Document Revision

Date Revision Code Description

June 2025 ISDOC130B - Pictures updated
- Added firmware examples

March 2025 ISDOC130A - Initial Release

Shield Revision

Date Revision Code Description

February 2025 ISB3026r3 Initial Release

Documentation Feedback

Feedback and error reporting on this document are very much appreciated.

Sales Contact

For special order requirements, large volume orders, or scheduled orders, please contact our sales department at:

Customization

INACKS can develop new products or customize existing ones to meet specific client needs. Please contact our

engineering department at:

Independence and Trademarks Notice

This company and the products provided herein are developed independently and are not affiliated with, endorsed

by, or associated with any official protocol or standardization entity.

All trademarks, names, and references to specific protocols remain the property of their respective owners.

Kappa4310Ard User Manual

17/17 ISDOC130B, Revised June 2025
 Submit Feedback

Disclaimer
Limited warranty and liability — Information in this document is

believed to be accurate and reliable. However, INACKS does not

give any representations or warranties, expressed or implied, as to

the accuracy or completeness of such information and shall have no

liability for the consequences of use of such information. INACKS

takes no responsibility for the content in this document if provided

by an information source outside of INACKS.

In no event shall INACKS be liable for any indirect, incidental,

punitive, special or consequential damages (including - without

limitation - lost profits, lost savings, business interruption, costs

related to the removal or replacement of any products or rework

charges) whether or not such damages are based on tort (including

negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any

reason whatsoever, INACKS’s aggregate and cumulative liability

towards customer for the products described herein shall be limited

in accordance with the Terms and conditions of commercial sale of

INACKS.

Right to make changes — INACKS reserves the right to make

changes to information published in this document, including without

limitation specifications and product descriptions, at any time and

without notice. This document supersedes and replaces all

information supplied prior to the publication hereof.

Suitability for use — INACKS products are not designed, authorized

or warranted to be suitable for use in life support, life-critical or

safety-critical systems or equipment, nor in applications where

failure or malfunction of an INACKS product can reasonably be

expected to result in personal injury, death or severe property or

environmental damage. INACKS and its suppliers accept no liability

for inclusion and/or use of INACKS products in such equipment or

applications and therefore such inclusion and/or use is at the

customer’s own risk.

Quick reference data — The Quick reference data is an extract of

the product data given in the Limiting values and Characteristics

sections of this document, and as such is not complete, exhaustive

or legally binding.

Applications — Applications that are described herein for any of

these products are for illustrative purposes only. INACKS makes no

representation or warranty that such applications will be suitable for

the specified use without further testing or modification.

Customers are responsible for the design and operation of their

applications and products using INACKS products, and INACKS

accepts no liability for any assistance with applications or customer

product design. It is customer’s sole responsibility to determine

whether the INACKS product is suitable and fit for the customer’s

applications and products planned, as well as for the planned

application and use of customer’s third party customer(s).

Customers should provide appropriate design and operating

safeguards to minimize the risks associated with their applications

and products.

INACKS does not accept any liability related to any default, damage,

costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by

customer’s third party customer(s). Customer is responsible for

doing all necessary testing for the customer’s applications and

products using INACKS products in order to avoid a default of the

applications and the products or of the application or use by

customer’s third party customer(s). INACKS does not accept any

liability in this respect.

Limiting values — Stress above one or more limiting values (as

defined in the Absolute Maximum Ratings System of IEC 60134) will

cause permanent damage to the device. Limiting values are stress

ratings only and (proper) operation of the device at these or any

other conditions above those given in the Recommended operating

conditions section (if present) or the Characteristics sections of this

document is not warranted. Constant or repeated exposure to

limiting values will permanently and irreversibly affect the quality

and reliability of the device.

Terms and conditions of commercial sale — INACKS products are

sold subject to the general terms and conditions of commercial sale,

as published at http://www.inacks.com/comercialsaleterms, unless

otherwise agreed in a valid written individual agreement. In case an

individual agreement is concluded only the terms and conditions of

the respective agreement shall apply. INACKS hereby expressly

objects to applying the customer’s general terms and conditions with

regard to the purchase of INACKS products by customer.

No offer to sell or license — Nothing in this document may be

interpreted or construed as an offer to sell products that is open for

acceptance or the grant, conveyance or implication of any license

under any copyrights, patents or other industrial or intellectual

property rights.

Export control — This document as well as the item(s) described

herein may be subject to export control regulations. Export might

require a prior authorization from competent authorities.

Non-automotive qualified products — This INACKS product is not

suitable for automotive use. It is neither qualified nor tested in

accordance with automotive testing or application requirements.

INACKS accepts no liability for inclusion and/or use of non-

automotive qualified products in automotive equipment or

applications.

Protocol Guidance Disclaimer: The information provided herein

regarding the protocol is intended for guidance purposes only. While

INACKS strive to provide accurate and up-to-date information, this

content should not be considered a substitute for official protocol

documentation. It is the responsibility of the client to consult and

adhere to the official protocol documentation when designing or

implementing systems based on this protocol.

INACKS make no representations or warranties, either expressed

or implied, as to the accuracy, completeness, or reliability of the

information contained in this document. INACKS shall not be held

liable for any errors, omissions, or inaccuracies in the information or

for any user’s reliance on the information.

The client is solely responsible for verifying the suitability and

compliance of the provided information with the official protocol

standards and for ensuring that their implementation or usage of the

protocol meets all required specifications and regulations. Any

reliance on the information provided is strictly at the user’s own risk.

Certification and Compliance Disclaimer: Please be advised that the

product described herein has not been certified by any competent

authority or organization responsible for protocol standards.

INACKS do not guarantee that the chip meets any specific protocol

compliance or certification standards.

It is the responsibility of the client to ensure that the final product

incorporating this product is tested and certified according to the

relevant protocol standards before use or commercialization. The

certification process may result in the product passing or failing to

meet these standards, and the outcome of such certification tests is

beyond our control.

INACKS disclaim any liability for non-compliance with protocol

standards and certification failures. The client acknowledges and

agrees that they bear sole responsibility for any legal, compliance,

or technical issues that arise due to the use of this product in their

products, including but not limited to the acquisition of necessary

protocol certifications.

	Presentation
	Product Selection Guide
	1. Description
	1.1. General Description
	1.2. Module Pinout
	1.3. RJ45 Connectors

	2. Bus Recommendations
	2.1. Bus Topology
	2.2. Cable Wiring

	3. Firmware Implementation Guide
	3.1. Arduino Example
	3.2. STM32 Example

	4. Schematic
	Content
	Appendix
	Revision History
	Documentation Feedback
	Sales Contact
	Customization
	Independence and Trademarks Notice
	Disclaimer

