
IS4320 Modbus RTU Master

1/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

IS4320: I2C Modbus RTU Master Stack
Function Codes 1, 2, 3, 4, 15 and 16

Modbus Stack Characteristics

• Implemented Function Codes:

- FC 1 – Read Coils

- FC 2 – Read Discrete Inputs

- FC 3 – Read Holding Registers

- FC 4 – Read Input Registers

- FC 15 – Write Multiple Coils

- FC 16 – Write Multiple Holding Registers

• Available baud rates: 1200, 2400, 9600,

19200, 57600, and 115200 bps.

Main Advantages

• Eliminates engineering time and costs for

protocol implementation and testing.

• Simple and easy to use solution.

• Reduces product time-to-market (TTM).

• Reduces microcontroller CPU load.

• Reduces impact on microcontroller peripherals

(no need for timers or UARTs).

• Saves microcontroller pins with a shared I2C.

• Features a small, easy-to-solder SO8N

package.

• Provides a low-cost solution.

• Makes the Modbus protocol transparent.

• I2C Speeds: 100kHz, 400kHz, and 1MHz.

Applications

• Modbus Master Device

• Modbus PLC

• Modbus Acquisition System

• Communications between PCBs

General Description

The IS4320 is an integrated circuit with a built-in

Modbus RTU Master Stack, providing a complete

standalone Modbus Master solution with an

I2C-Serial interface for easy integration into your

applications.

The IS4320 features two communication buses: a

TTL UART for Modbus transceiver (RS485, RS422,

RS232, etc.) and an I2C-Serial Interface for the

microcontroller.

The aim of the IS4320 is to save engineering time

and costs associated with implementing and testing

the Modbus RTU communication protocol, providing

a reliable solution that reduces the time-to-market

(TTM) of your product.

The IS4320 also brings benefits to your

microcontroller: it utilizes I2C, eliminating the need

for dedicated pins since I2C can be shared with other

peripherals. Additionally, it eliminates the need for

timers and decreases the CPU load on the

microcontroller.

The device operates at 3.3V, and its I/O pins are 5V

tolerant, allowing the use of either 3.3V or 5V

transceivers. It is available in two temperature

ranges: Industrial (-40ºC to +85ºC) and Extended (-

40ºC to +125ºC).

Part Number Package Op. Temperature

IS4320-S8-I SO8N -40ºC to +85ºC

IS4320-S8-E SO8N -40ºC to +125ºC

https://www.inacks.com/

IS4320 Modbus RTU Master

2/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

Product Selection Guide

 Part Number Form Factor
Physical

Layer
Stack Description

S
ta

c
k
 C

h
ip

IS
4
3

2
0
-S

8

SO8N UART
Modbus RTU
Master

Modbus RTU Master Stack Chip.

IS
4
3
2
0
 E

v
a
lu

a
ti

o
n

 B
o

a
rd

s

K
a
p

p
a
4
3

2
0
A

rd

Arduino
Compatible

RS485
Modbus RTU
Master

IS4320 Evaluation Board with RS485
Transceiver and Arduino form factor.

Compatible with Arduino and Nucleo
Boards.

K
a
p

p
a
4
3

2
0
R

a
s
p

Raspberry Pi
Compatible

RS485
Modbus RTU
Master

IS4320 Evaluation Board with RS485
Transceiver and Raspberry Pi form
factor.

https://www.inacks.com/

IS4320 Modbus RTU Master

3/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

1. Electrical Specifications

Absolute Maximum Ratings

Parameter Min Max Unit

Input Voltage

VDD Pin -0.3 4

V SCL, SDA, RX, TX, DIR Pins -0.3 5.5

I2CSPD Pin -0.3 4

Current Sourced/Sunk by any I/O or Control Pin ±20 mA

Temperature
Operating Temperature

IS4320-S8-I -40 +85

ºC IS4320-S8-E -40 +125

Storage Temperature -65 +150

Electrostatic Discharge
(TA = 25ºC)

Human-body model (HBM), Class 1C -2000 +1500
V

Charged-device model (CDM), Class C2a -500 +500

Exceeding the specifications outlined in the Absolute Maximum Ratings could potentially lead to irreversible harm

to the device. It's important to note that these ratings solely indicate stress limits and don't guarantee the device's

functionality under such conditions, or any others not specified in the Recommended Operating Conditions.

Prolonged exposure to conditions at or beyond the absolute maximum ratings might compromise the reliability of

the device.

Recommended Operation Conditions

Parameter Symbol Min Nom Max Unit

Supply Voltage VDD 2.0 3.3 3.6

V Input Voltage at SCL, SDA and RX, TX, DIR Pins VI/O-IN -0.3 3.3 5.5

Input Voltage at I2CSPD Pin VI2CSPD-IN -0.3 1.8, 3.3 3.6

Source/Sink Current at SCL, SDA and RX, TX, DIR Pins II/O-SS - - ±6 mA

Electrical Characteristics

Parameter Symbol Min Nom Max Unit

Current Consumption (TA = 25ºC) IOP - 3.40 3.90 mA

Input Voltage
Logical High-Level VIH 0.7xVDD - -

V
Logical Low-Level VIL - - 0.3xVDD

Electrical Specifications Revision A

https://www.inacks.com/

IS4320 Modbus RTU Master

4/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

2. Detailed Description

2.1. IS4320 Description

The IS4320 is an integrated circuit with a built-in

Modbus RTU Master Stack, providing a complete

standalone Modbus Master solution with an I2C-

Serial interface for easy integration into customer

applications.

Note: This schematic is simplified for clarity and should not

be used for technical reference.

The IS4320 enables any I2C Master device to

communicate with Modbus RTU slave devices,

allowing data to be read using Function Codes 1, 2,

3, and 4, or written using Function Codes 15 and 16.

Its simplicity of use through the I2C-Serial Interface

drastically reduces firmware development time while

providing a robust Modbus solution.

The IS4320 features two communication buses: a

TTL UART for Modbus and an I2C-Serial Interface

for the microcontroller.

The Modbus UART can connect to various

transceivers such as RS485, RS422, RS232, fiber,

or radio, with RS485 being the most common. The

I2C-Serial Interface connects to any I2C Master

device, including microcontrollers, microprocessors,

single-board computers like the Raspberry Pi, or

development boards such as Arduino.

The I2C interface supports 100 kHz, 400 kHz, and 1

MHz. The Modbus interface supports 1200, 2400,

9600, 19200, 57600, and 115200 bps.

Essentially, you write the desired Modbus Request

into the IS4320 Memory Map, then read back the

Memory Map to obtain the Response. The Request

registers hold the Function Code, Starting Address,

Quantity of Registers, and any Data to be sent to the

Modbus slave. The Response registers store the

data returned by the Modbus slave. From the I2C

side, you simply write to and read from the device as

if it were an I2C memory device.

The IS4320 operates at 3.3V, and its Modbus UART

and I2C pins are 5V tolerant, allowing the chip to

connect with a wide variety of RS485 transceivers

and microcontrollers.

It is available in Industrial (-40ºC to +85ºC) and

Extended Temperature Range (-40º to +125ºC).

This company and the products provided herein are

developed independently and are not affiliated with,

endorsed by, or associated with any official protocol

or standardization entity. All trademarks, names, and

references to specific protocols remain the property

of their respective owners.

https://www.inacks.com/

IS4320 Modbus RTU Master

5/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

2.2. Organization

Request and Response

The concepts of Request and Response are

important to understand in Modbus. When your

microcontroller uses the IS4320 to read from or write

to a Modbus slave, the IS4320 sends a Request to

the slave. The data or acknowledgment returned by

the slave to the IS4320 is the Response. Even when

the IS4320 writes data to a slave, the slave sends a

Response to confirm that the write operation was

received successfully.

Modbus Memory Types

Modbus defines four types of memory for slaves:

Discrete Inputs and Coils, which are organized as

bits, and Input Registers and Holding Registers,

which are organized as 16-bit words. Holding

Registers is the most commonly used memory type.

Modbus slaves do not need to implement all memory

types or registers. Often, only the Holding Registers

memory type is used, with just the required number

of registers. The memory and register count depend

on the device’s functionality. For example, a motor

speed controller might implement a single Holding

Register, allowing a Modbus Master to write a value

between 0 and 100 to set its speed.

Memory
Name

Organization Read/Write Access Method
Starting
Address

Quantity
of
Registers

Accepts
Broadcast?

Discrete Inputs Bits Read only FC 2 – Read Discrete Input 0 to 0xFFFF 1 to 2000 No

Coils Bits Read/Write

FC 1 – Read Coils 0 to 0xFFFF 1 to 2000 No

FC 15 – Write Multiple Coils 0 to 0xFFFF 1 to 1968 Yes

Input Registers
Words
(16-bit)

Read only FC 4 – Read Input Registers 0 to 0xFFFF 1 to 125 No

Holding
Registers

Words
(16-bit)

Read/Write

FC 3 – Read Holding Registers 0 to 0xFFFF 1 to 125 No

FC 16 – Write Multiple Holding
Registers

0 to 0xFFFF 1 to 123 Yes

Holding Registers

A Modbus slave can have up to 65,536 Holding

Registers, corresponding to addresses 0x0000 to

0xFFFF. You can access any register in this range

and perform a read Request with Function Code 3 in

quantities of 1 to 125 registers. To read more than

125 registers, you need to execute Function Code 3

multiple times. You can write to Holding Registers

using Function Code 16 in quantities of 1 to 123

registers per execution. To write more than 123

registers, multiple executions of Function Code 16

are required.

Reading (FC 3) or writing (FC 16) a single register

corresponds to accessing a full 16-bit word.

Function Code 16 (Write Multiple Registers) accepts

broadcast. This means you can perform FC 16 to the

special Modbus slave address 0, and the write

Request will be sent to all Modbus slaves. Function

Code 3 does not support broadcast.

Input Registers

Input Registers work the same as Holding Registers

but support read operations only, using Function

Code 4.

Coils

A Modbus slave can have up to 65,536 Coil status

addresses, corresponding to addresses 0x0000 to

0xFFFF. Each address contains 16 Coil statuses,

giving a total of 1,048,576 Coil statuses (65,536 × 16

= 1,048,576). You can access any Coil status in this

range and perform a read Request in quantities of 1

to 2000 in a single Request using Function Code 1,

or write in quantities of 1 to 1968 in a single Request

using Function Code 15. More Coils can be

accessed by executing the Request multiple times.

Reading (FC 1) or writing (FC 15) a single coil

corresponds to accessing a 1-bit value.

Function Code 15 (Write Multiple Coils) supports

broadcast. This means you can perform FC 15 to the

special Modbus slave address 0, and the write

Request will be sent to all Modbus slaves. Function

Code 1 does not support broadcast.

Discrete Inputs

Discrete Inputs work the same as coils but support

read operations only, using Function Code 2.

https://www.inacks.com/

IS4320 Modbus RTU Master

6/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

2.3. IS4320 Advantages

The use of the IS3410 brings the following benefits:

1. Eliminates engineering time and costs for

protocol implementation and testing.

2. Reduces product time-to-market (TTM).

3. Increases product reliability.

4. Saves microcontroller pins.

5. Reduces microcontroller CPU load.

The IS4320 significantly reduces engineering time by

eliminating the need to manually implement and test

the Modbus protocol. This time saving allows

engineers to allocate resources more efficiently

towards other critical aspects of product

development. Additionally, this efficiency facilitates a

faster time-to-market (TTM) and shortens the time to

develop a minimum viable product (MVP). The

streamlined development process enables

companies to accelerate their product launch

timelines, meeting market demands swiftly and

effectively.

The use of a protocol stack chip eliminates the need

for dedicated libraries on the microcontroller, both for

the protocol and for the chip itself. Instead, it is

accessed through a standard memory map using

generic I2C functions, just like an I2C memory chip.

Using the IS4320 solution enhances customer

application reliability, with the Modbus protocol

already embedded, including its full protocol state

machine and the T15 and T35 time constraints

implemented.

Additionally, using the IS4320 can reduce

Microcontroller pin requirements by saving three

dedicated UART pins (Rx, Tx, and direction) and

utilizing a shared bus like I2C.

Furthermore, offloading the Modbus protocol

processing to the IS3410 saves Microcontroller CPU

load, Flash, RAM memory, and Timer resources.

This efficiency enhancement allows the

Microcontroller to handle other tasks more

effectively, contributing to overall system

performance improvements and enabling the

selection of a lower-end Microcontroller.

In conclusion, the usage of IS4320 not only

streamlines development, enhances reliability, and

accelerates time-to-market but also optimizes

Microcontroller resources, making it a

comprehensive solution for efficient product

development and deployment.

https://www.inacks.com/

IS4320 Modbus RTU Master

7/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

2.4. Modbus UART Port

https://www.inacks.com/

IS4320 Modbus RTU Master

8/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

The IS4320 is compatible with any Modbus RTU Serial Interface, including RS485, RS422, RS232, and others,

thanks to its UART port. A transceiver matching the serial interface of the field bus (RS485, RS422, RS232, etc.)

must be connected to the IS4320 UART port. This transceiver adapts the field bus voltage levels to 3.3V or 5V,

ensuring proper operation with the IS4320.

For example, if the customer application connects to an RS485 field bus, an RS485 transceiver such as the

THVD1500 should be used.

https://www.inacks.com/

IS4320 Modbus RTU Master

9/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

3. Refer to chapter Mechanical

https://www.inacks.com/

IS4320 Modbus RTU Master

10/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

https://www.inacks.com/

IS4320 Modbus RTU Master

11/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

Hardware Examples for hardware design examples.

Note: Connecting field buses like RS485 or others

directly to the IS4320 will not work and will

permanently damage the device.

https://www.inacks.com/

IS4320 Modbus RTU Master

12/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

4. Usage
The IS4320 operates very simply via I2C in three steps. All operations are performed using I2C Word Write and

I2C Word Read operations. These commands are the same ones typically used to access I2C EEPROMs and are

already implemented in most microcontroller IDEs, such as STM32CubeIDE or Arduino.

1. Configure the IS4320 Modbus communications:

Set the baud rate, parity, and stop bits to match the Modbus Slave device configuration by writing to

the following registers: CFG_MBBDR, CFG_MBPAR, and CFG_MBSTP.

2. Configure and execute the Modbus Request:

Set the Slave ID, the Function Code, the Starting Address for the read or write operation, and the

Quantity of registers. If performing a write operation, also set the data to be written. Finally, trigger

the Request.

This is done using the following registers: REQ_SLAVE, REQ_FC, REQ_STARTING, REQ_QTY and

REQ_EXECUTE. Use also REQ_DATAx for a write operation.

3. Read the Modbus Response:

After executing the Request, you can check the result of the operation by reading the RES_STATUS

register. If you Requested to read some data, retrieve also the data by reading the RES_DATAx

registers.

https://www.inacks.com/

IS4320 Modbus RTU Master

13/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

4.1. Example: Read Holding Registers

Suppose we have a Modbus temperature and humidity sensor. It has Slave ID 34, with temperature stored in

Holding Register address 0 and humidity in Holding Register address 1. The sensor communicates over RS485 at

9600 bps, with even parity and 1 stop bit.

To read the temperature and humidity, the IS4320 must execute a Modbus Request using Function Code 3 (Read

Holding Registers), with the starting address set to 0 and the quantity of registers set to 2.

The sequence of involve three steps: configuring the Modbus communications, configuring and executing the

Modbus Request, and reading the Modbus Response.

The IS4320 I2C register addresses and their contents are 16 bits long. Refer to chapter I2C Description for more

information.

1. First, configure the Modbus communications.

R
e
g
is

te
r

T
y
p
e

I2
C

 R
e
g
is

te
r

A
d
d

re
s
s

Register Name Register Description

C
o
n
fi
g
u

ra
ti
o
n

R
e
g
is

te
rs

0 CFG_MBBDR Baud Rate Configuration

1 CFG_MBPAR Parity Bit Configuration

2 CFG_MBSTP Stop Bits Configuration

3 CFG_MB_TIMEOUT Modbus Response Timeout (ms)

4 CFG_CHIP_ID Chip Identification Number

5 CFG_CHIP_REV Chip Revision Number

Figure 1: Configuration Registers of the IS4320 Memory Map

1.1. Configure the Baud Rate:

Perform an I2C Single Word Write to the I2C register address 0 (CFG_MBBDR) with the value 112 to

set the Baud Rate to 9600 bps.

For more information check section CFG_MBBDR Register.

1.2. Configure the Parity Bit:

Perform an I2C Single Word Write to the I2C register address 1 (CFG_MBPAR) with the value 122 to

set the parity to Even.

For more information check section CFG_MBPAR Register.

1.3. Configure the Stop Bits:

Perform an I2C Single Word Write to the I2C register address 2 (CFG_MBSTP) with the value 131 to

set only one stop bit.

For more information check section CFG_MBSTP Register.

https://www.inacks.com/

IS4320 Modbus RTU Master

14/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

2. Second, configure and execute the Modbus Request.

R
e
g
is

te
r

T
y
p
e

I2
C

 R
e
g
is

te
r

A
d
d

re
s
s

Register Name Register Description

R
e
q
u

e
s
t

R
e

g
is

te
rs

6 REQ_EXECUTE Execute the Request

7 REQ_SLAVE Modbus Slave Address for the Request

8 REQ_FC Function Code for the Request

9 REQ_STARTING Starting Address for the Request

10 REQ_QTY Quantity of Register/Coils to read or write for the Request

11 REQ_DATA1 Data to Write for the Request 1

12 REQ_DATA2 Data to Write for the Request 2

13 REQ_DATA3 Data to Write for the Request 3

…
REQ_DATA4
to
REQ_DATA124

…

135 REQ_DATA125 Data to Write for the Request 125

136 REQ_DATA126 Data to Write for the Request 126

137 REQ_DATA127 Data to Write for the Request 127

Figure 2: Request Registers of the IS4320 Memory Map

2.1. Configure the Slave Address:

Perform an I2C Single Word Write to the I2C register address 7 (REQ_SLAVE) with the value 34,

which is the Modbus Slave Address of the temperature and humidity sensor.

For more information check section REQ_SLAVE Register.

2.2. Configure the Function Code:

Perform an I2C Single Word Write to the I2C register address 8 (REQ_FC) with the value 3, which is

Function Code 3 Read Holding Registers.

For more information check section REQ_FC Register.

2.3. Configure the Starting Address:

Perform an I2C Single Word Write to the I2C register address 9 (REQ_STARTING) with the value 0,

indicating that reading should start at register address 0 of the temperature and humidity sensor.

For more information check section REQ_STARTING Register.

2.4. Configure the Quantity of Registers:

Perform an I2C Single Word Write to the I2C register address 10 (REQ_QTY) with the value 2, to

retrieve 2 registers (register 0 and register 1).

For more information check section REQ_QTY Register.

2.5. Execute the Request:

Perform an I2C Single Word Write to the I2C register address 6 (REQ_EXECUTE) to execute the

Modbus Request to the temperature and humidity sensor.

For more information check section REQ_EXECUTE Register.

https://www.inacks.com/

IS4320 Modbus RTU Master

15/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

3. Third, read the Modbus Response.

R
e
g
is

te
r

T
y
p
e

I2
C

 R
e
g
is

te
r

A
d
d

re
s
s

Register Name Register Description

R
e
s
p

o
n
s
e
 R

e
g
is

te
rs

138 RES_STATUS Response Status

139 RES_DATA1 Read Data from the Response 1

140 RES_DATA2 Read Data from the Response 2

141 RES_DATA3 Read Data from the Response 3

…
RES_DATA4
to
RES_DATA122)

…

261 RES_DATA123 Read Data from the Response 123

262 RES_DATA124 Read Data from the Response 124

263 RES_DATA125 Read Data from the Response 125

Figure 3: Response Registers of the IS4320 Memory Map

3.1. Check the Response:

Perform an I2C Single Word Read to the I2C register address 138 (RES_STATUS) to check the

result of the Request. You should expect a value of 2, indicating that the server has received the

Request. Make sure to allow I2C clock stretching in your microcontroller, as the IS4320 will hold the

I2C read operation until it receives the Response from the Modbus Slave or a timeout occurs.

For more information check section RES_STATUS Register.

3.2. Read the Response:

Perform an I2C Multiple Word Read from the I2C register address 139 (RES_DATA1), reading the

same number of words as specified in the Request Quantity register (REQ_QTY). Since we are reading

2 registers, 2 words (4 bytes) should be read.

For more information check section RES_DATAx Register.

https://www.inacks.com/

IS4320 Modbus RTU Master

16/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

4.2. Example: Write Holding Registers

Suppose we have a Modbus motor speed controller. It has Slave ID 27, with the motor speed configuration in its

Holding Register address 0. It communicates over RS485 at 115200 bps, with no parity and 1 stop bit.

To write the new motor speed setpoint, the IS4320 must execute a Modbus Request using Function Code 16 (Write

Multiple Registers), with the starting address set to 0 and the quantity of registers set to 1.

The sequence of involve three steps: configuring the Modbus communications, configuring and executing the

Modbus Request, and verifying the Response.

The IS4320 I2C register addresses and their contents are 16 bits long. Refer to chapter I2C Description for more

information.

1. First, configure the Modbus communications.

R
e
g
is

te
r

T
y
p
e

I2
C

 R
e
g
is

te
r

A
d
d

re
s
s

Register Name Register Description

C
o
n
fi
g
u

ra
ti
o
n

R
e
g
is

te
rs

0 CFG_MBBDR Baud Rate Configuration

1 CFG_MBPAR Parity Bit Configuration

2 CFG_MBSTP Stop Bits Configuration

3 CFG_MB_TIMEOUT Modbus Response Timeout (ms)

4 CFG_CHIP_ID Chip Identification Number

5 CFG_CHIP_REV Chip Revision Number

Figure 4: Configuration Registers of the IS4320 Memory Map

1.1. Configure the Baud Rate:

Perform an I2C Single Word Write to the I2C register address 0 (CFG_MBBDR) with the value 115 to

set the Baud Rate to 115200 bps.

For more information check section CFG_MBBDR Register.

1.2. Configure the Parity Bit:

Perform an I2C Single Word Write to the I2C register address 1 (CFG_MBPAR) with the value 120 to

set the parity to No Parity.

For more information check section CFG_MBPAR Register.

1.3. Configure the Stop Bits:

Perform an I2C Single Word Write to the I2C register address 2 (CFG_MBSTP) with the value 131 to

set only one stop bit.

For more information check section CFG_MBSTP Register.

https://www.inacks.com/

IS4320 Modbus RTU Master

17/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

2. Second, configure and execute the Modbus Request.

R
e
g
is

te
r

T
y
p
e

I2
C

 R
e
g
is

te
r

A
d
d

re
s
s

Register Name Register Description

R
e
q
u

e
s
t

R
e

g
is

te
rs

6 REQ_EXECUTE Execute the Request

7 REQ_SLAVE Modbus Slave Address for the Request

8 REQ_FC Function Code for the Request

9 REQ_STARTING Starting Address for the Request

10 REQ_QTY Quantity of Register/Coils to read or write for the Request

11 REQ_DATA1 Data to Write for the Request 1

12 REQ_DATA2 Data to Write for the Request 2

13 REQ_DATA3 Data to Write for the Request 3

…
REQ_DATA4
to
REQ_DATA124

…

135 REQ_DATA125 Data to Write for the Request 125

136 REQ_DATA126 Data to Write for the Request 126

137 REQ_DATA127 Data to Write for the Request 127

Figure 5: Request Registers of the IS4320 Memory Map

5.1. Configure the Slave Address:

Perform an I2C Single Word Write to the I2C register address 7 (REQ_SLAVE) with the value 27,

which is the Modbus Slave Address of the motor speed controller.

For more information check section REQ_SLAVE Register.

5.2. Configure the Function Code:

Perform an I2C Single Word Write to the I2C register address 8 (REQ_FC) with the value 16, which is

Function Code 16 Write Multiple Registers.

For more information check section REQ_FC Register.

5.3. Configure the Starting Address:

Perform an I2C Single Word Write to the I2C register address 9 (REQ_STARTING) with the value 0,

indicating that reading should start at register address 0 of the motor speed controller.

For more information check section REQ_STARTING Register.

5.4. Configure the Quantity of Registers:

Perform an I2C Single Word Write to the I2C register address 10 (REQ_QTY) with the value 1, to write

1 register (register 0).

For more information check section REQ_QTY Register.

5.5. Execute the Request:

Perform an I2C Single Word Write to the I2C register address 6 (REQ_EXECUTE) to execute the

Modbus Request to the motor speed controller.

For more information check section REQ_EXECUTE Register.

https://www.inacks.com/

IS4320 Modbus RTU Master

18/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6. Third, read the Modbus Response.

R
e
g
is

te
r

T
y
p
e

I2
C

 R
e
g
is

te
r

A
d
d

re
s
s

Register Name Register Description

R
e
s
p

o
n
s
e
 R

e
g
is

te
rs

138 RES_STATUS Response Status

139 RES_DATA1 Read Data from the Response 1

140 RES_DATA2 Read Data from the Response 2

141 RES_DATA3 Read Data from the Response 3

…
RES_DATA4
to
RES_DATA122)

…

261 RES_DATA123 Read Data from the Response 123

262 RES_DATA124 Read Data from the Response 124

263 RES_DATA125 Read Data from the Response 125

Figure 6: Response Registers of the IS4320 Memory Map

6.1. Check the Response:

Perform an I2C Single Word Read to the I2C register address 138 (RES_STATUS) to check the

result of the Request. You should expect a value of 2, indicating that the server has received the

Request. Make sure to allow I2C clock stretching in your microcontroller, as the IS4320 will hold the

I2C read operation until it receives the Response from the Modbus Slave or a timeout occurs.

For more information check section RES_STATUS Register.

https://www.inacks.com/

IS4320 Modbus RTU Master

19/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

5. Pin Description

Pin Name Type Description

1 SDA Open Drain
I2C-compatible Data pin. Open drain, it requires pull-up.
This is a 3.3 V pin and is 5 V tolerant.

2 VDD Supply
3.3 V power supply pin.
Bypass this pin to GND with a 100nF ceramic capacitor.

3 VSS Ground Ground reference pin.

4 TX
Digital Output

Push-Pull

Modbus UART pins in TTL voltage levels. TX is the IS4320 transmit pin, RX the IS4320
receive pin.
These are 3.3 V pins and are 5 V tolerant.

Attention:
Use the appropriate transceiver to connect the IS4320 with the desired bus.
Do not connect field buses such as RS485, RS422, RS232 or other directly to these pins.

5 RX Digital Input

6 DIR
Digital Output

Push-Pull

Direction pin for the transceivers, used to control the data flow direction on the bus.
This pin goes high only when the IS4320 is transmitting data. It goes low while receiving
data or waiting for data.

Example:
In an RS485 transceiver, the Receiver Output Enable (RE) and Driver Output Enable (DE)
pins are connected to this pin.

7 I2CSPD Analog Input

I2C-Serial Interface Speed Selection pin.

• For 100kHz pull to GND.

• For 400kHz make a voltage divider of VDD/2 (1.65V).

• For 1MHz pull to VDD (3.3V).

8 SCL Open Drain
I2C-compatible Clock pin. Open drain, it requires pull-up.
This is a 3.3 V pin and is 5 V tolerant.

Pin Description Revision A

5.1. TX and RX Pins

Modbus UART Transmit and Receive Pins.

These pins handle UART transmit and receive

functions for Modbus data and operate at TTL levels

of 3.3V and they are 5V tolerant.

To interface with the field bus, these pins must

connect to a suitable transceiver based on the field

bus used: RS485, RS422, RS232, or others.

Please note that applying directly field bus (RS485,

RS422, RS232, etc.) voltage levels to those pins will

permanently damage the device.

For an RS485 fieldbus, use an RS485 transceiver,

such as the THVD1500, to convert RS485 differential

signaling to TTL/CMOS voltage levels. For an RS232

fieldbus, a transceiver like the MAX3221 can be

used. Refer to the Hardware Examples chapter for

more details.

5.2. DIR Pin

Modbus Direction Pin.

This pin is typically used in transceivers to control the

data flow (sending or receiving). For RS485

transceivers, it connects to the DE and RE̅̅ ̅̅ pins of the

transceiver.

Modbus Over Serial Line is usually implemented on

“Two-Wire” RS485 electrical interface, which

operates in a half-duplex topology. Therefore, a

direction pin is needed to indicate whether the

transceiver should send or receive data. By default,

the DIR pin is in a low state, which sets the

transceiver to receive mode.

https://www.inacks.com/

IS4320 Modbus RTU Master

20/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

5.3. SCL and SDA Pins

I2C-Compatible Bus Interface Pins.

SCL (Serial Clock Line): This pin is used to

synchronize data transfer between the IS4320

device and the Microcontroller or other CPU.

SDA (Serial Data Line): This bidirectional pin is used

for both sending and receiving data between the

IS4320 and the Microcontroller or other CPU.

Both pins are open-drain and must be pulled up to

3.3V or 5V. The pull-up resistor value should be

chosen based on the bus speed and capacitance.

Typical values are 4.7kΩ for Standard Mode

(100kbps) and 2.2kΩ for Fast Mode (400kbps) at

both 3.3V and 5V.

5.4. I2CSPD Pin

I2C-Serial Interface Speed Selection Pin.

This pin configures the IS4320 internal I2C-Serial

Interface timings and filters to properly work with the

selected bus speed.

- For a 100kHz setting, set the I2CSPD pin to

VSS.

- For a 400kHz setting, set the I2CSPD to 1.65V

(VDD/2) using a balanced voltage divider. This

can be achieved by placing two 4.7kΩ resistors

from the I2CSPD pin: one to VDD and the other

to VSS.

- For a 1000MHz setting, set the I2CSPD pin to

VDD.

Important Remark:

A mismatch between the configured I2C speed and

the actual operating I2C speed (e.g., configuring the

bus for 100kHz but operating at 1MHz) can lead to

an inconsistent state where some I2C messages are

processed while others are not.

Ensure a proper match between the actual operating

speed and the configured speed at the I2CSPD pin:

If your bus works at 100kHz, ensure the I2CSPD pin

is tied to VSS. If it works at 400kHz ensure the pin is

at 1.65V. If it works at 1000MHz, ensure the pin is at

3.3V.

https://www.inacks.com/

IS4320 Modbus RTU Master

21/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6. Memory Description

6.1. Memory Map Organization

The IS4320 is organized internally as a single page

containing 264 registers, with addresses ranging

from 0 to 263. These registers can be accessed

individually or in blocks. The register addressing is

16-bit, and each register is 16-bit wide. There are

three types of registers: Configuration Registers,

Request Registers, and Response Registers. All

registers are readable, and most are writable, and

can be accessed by the microcontroller via I2C.

Configuration Registers

The Configuration Registers range from address 0 to

5.

These registers are used to set the Modbus

communication parameters: baud rate, parity bit, and

stop bits. You can also set the Response timeout,

which is the time (in milliseconds) the IS4320 waits

for a Response after sending a Request

Two special registers are also included: the Chip ID,

which holds the constant number 20 and can be used

to verify proper I2C communication, and the Chip

Revision Number, which is used for production and

product tracking.

The default configuration values are 19200 baud,

even parity, and one stop bit. You only need to set

the configuration if your Modbus Slave differs from

these settings. Once configured, you don’t need to

set it again as long as it matches your Modbus Slave

communication parameters.

Request Registers

The Request Registers range from address 6 to 137.

These registers are used to set up and send Modbus

Requests to the Modbus Slave. Here you set the

Modbus Slave ID, the Function Code to be sent, the

starting register for reading or writing data, and the

quantity of registers to read or write. For write

Requests, you also set the data to be sent.

Response Registers

The Response Registers range from address 138 to

263.

An important register stored here is RES_STATUS,

which holds the result of the Modbus Request. This

register indicates whether the Modbus Slave

successfully received the Request, whether there

was a timeout waiting for a Response, whether there

was a Request configuration error, or whether the

Slave reported an error. For read Requests, it also

contains the Requested data.

.

https://www.inacks.com/

IS4320 Modbus RTU Master

22/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6.2. Memory Map Table

R
e
g
is

te
r

T
y
p
e

I2
C

 R
e
g
is

te
r

A
d
d

re
s
s

Register Name Register Description

C
o
n
fi
g
u

ra
ti
o
n

R
e
g
is

te
rs

0 CFG_MBBDR Baud Rate Configuration

1 CFG_MBPAR Parity Bit Configuration

2 CFG_MBSTP Stop Bits Configuration

3 CFG_MB_TIMEOUT Modbus Response Timeout (ms)

4 CFG_CHIP_ID Chip Identification Number

5 CFG_CHIP_REV Chip Revision Number

R
e
q
u

e
s
t

R
e

g
is

te
rs

6 REQ_EXECUTE Execute the Request

7 REQ_SLAVE Modbus Slave Address for the Request

8 REQ_FC Function Code for the Request

9 REQ_STARTING Starting Address for the Request

10 REQ_QTY Quantity of Register/Coils to read or write for the Request

11 REQ_DATA1 Data to Write to the Modbus Slave

12 REQ_DATA2 Data to Write to the Modbus Slave

13 REQ_DATA3 Data to Write to the Modbus Slave

…
REQ_DATA4
to
REQ_DATA124

…

135 REQ_DATA125 Data to Write to the Modbus Slave

136 REQ_DATA126 Data to Write to the Modbus Slave

137 REQ_DATA127 Data to Write to the Modbus Slave

R
e
s
p

o
n
s
e
 R

e
g
is

te
rs

138 RES_STATUS Response Status

139 RES_DATA1 Data Read from the Modbus Slave

140 RES_DATA2 Data Read from the Modbus Slave

141 RES_DATA3 Data Read from the Modbus Slave

…
RES_DATA4
to
RES_DATA122)

…

261 RES_DATA123 Data Read from the Modbus Slave

262 RES_DATA124 Data Read from the Modbus Slave

263 RES_DATA125 Data Read from the Modbus Slave

https://www.inacks.com/

IS4320 Modbus RTU Master

23/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6.3. CFG_MBBDR Register

The CFG_MBBDR register stores the Modbus Baud

Rate configuration. The default value is 113,

representing 19200 bps, which is the default Modbus

speed.

Allowed configuration values are 110 to 115. Any

other value will be ignored.

- Value 110 sets a Modbus speed of 1200bps.

- Value 111 sets a Modbus speed of 2400bps.

- Value 112 sets a Modbus speed of 9600bps.

- Value 113 (default) sets a Modbus speed of

19200bps.

- Value 114 sets a Modbus speed of 57600bps.

- Value 115 sets a Modbus speed of 115200bps.

Any modifications to this register will take effect

immediately after the I2C write operation.

This is a volatile RAM register. On each power-up, it

loads its default value.

 Name: CFG_MBBDR

 Description: Baud Rate Configuration

 Register Address: 0 (0x000)

 Default value: 113 (0x0071)

 Memory Type: Volatile RAM

 Allowed values: 110 to 115 (0x006E to 0x0073)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 - - - - - - - -

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 - MBBDR [6 to 0]

https://www.inacks.com/

IS4320 Modbus RTU Master

24/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6.4. CFG_MBPAR Register

The MBBDR register stores the Modbus Parity Bit

configuration. The default value is 122, representing

Even Parity, which is de default Modbus Parity.

Allowed configuration values range from 110 to 115;

attempting to write any other values will not have any

effect.

- Value 120 represents No Parity.

- Value 121 represents Odd Parity.

- Value 122 (default) represents Even Parity.

Any modifications to this register will take effect

immediately after the I2C write operation.

This is a volatile RAM register. On each power-up, it

loads its default value.

 Name: CFG_MBPAR

 Description: Parity Bit Configuration

 Register Address: 1 (0x001)

 Default value: 122 (0x007A)

 Memory Type: Volatile RAM

 Allowed values: 120 to 122 (0x0078 to 0x007A)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 - - - - - - - -

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 - CFG_MBPAR [6 to 0]

https://www.inacks.com/

IS4320 Modbus RTU Master

25/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6.5. CFG_MBSTP Register

The MBBDR register contains the Modbus Parity Bit

configuration. The default value is 131, representing

One Stop Bit, which is the default Modbus Sop Bit.

Allowed configuration values range from 131 to 132;

attempting to write any other values will not have any

effect.

- Value 131 (default) One Stop bit (default).

- Value 132 Two Stop bit.

Any modifications to this register will take effect

immediately after the I2C write operation.

This is a volatile RAM register. On each power-up, it

loads its default value.

 Name: CFG_MBSTP

 Description: Stop Bits Configuration

 Register Address: 2 (0x002)

 Default value: 131 (0x0083)

 Memory Type: Volatile RAM

 Allowed values: 131 and 132 (0x0083 and 0x0084)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 - - - - - - - -

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 CFG_MBSTP [7 to 0]

https://www.inacks.com/

IS4320 Modbus RTU Master

26/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6.6. CFG_MB_TIMEOUT Register

Modbus Response timeout configuration register.

The CFG_MB_TIMEOUT register sets the Modbus

Response timeout in milliseconds. Its default value is

1000 (1000 ms). This is the maximum time the

IS4320 will wait for a Response from the Slave. If no

Response is received within this period, the IS4320

sets the RES_STATUS register to 3 – Sent and

Timeout. During this waiting period, the IS4320 will

not accept any new Requests.

Allowed timeout milliseconds values range from 50

to 15000; attempting to write any other values will not

be saved.

This is a volatile RAM register. On each power-up, it

loads its default value.

 Name: CFG_MB_TIMEOUT

 Description: Modbus Response Timeout (ms)

 Register Address: 3 (0x003)

 Default value: 1000 (0x3E8)

 Memory Type: Volatile RAM

 Allowed values: 50 to 15000 (0x0032 and 0x3A98)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 -

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 CFG_MB_TIMEOUT [14 to 0]

https://www.inacks.com/

IS4320 Modbus RTU Master

27/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6.7. CFG_CHIP_ID Register

The CFG_CHIP_ID register contains the chip

identifier, which is a fixed value of 20. This value is

used for production tracking. It is stored in ROM and

will not change throughout the product's lifecycle.

Since this register value is constant, reading it during

firmware development can help verify that I2C

communications are working and that the chip’s

memory can be properly read.

This register is read-only.

 Name: CFG_CHIP_ID

 Description: Chip Identification Number

 Address: 4 (0x004)

 Memory Type: ROM

 Value: 20 (0x0014)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 0 0 0 0 0 0 0 0

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 0 0 0 1 0 1 0 0

https://www.inacks.com/

IS4320 Modbus RTU Master

28/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6.8. CFG_CHIP_REV Register

The CFG_CHIP_REV register indicates the chip

revision.

This value is intended for production and product

tracking. It is stored in ROM and may change

throughout the product's lifecycle.

This register is read-only.

 Name: CFG_CHIP_REV

 Description: Chip Revision Number

 Address: 5 (0x005)

 Memory Type: ROM

 Value: (Depends on the revision)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 - - - - - - - -

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 - - - - - - - -

https://www.inacks.com/

IS4320 Modbus RTU Master

29/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6.9. REQ_EXECUTE Register

Execute Request register.

Writing a 1 to this register sends the configured

Modbus Request (set in the REQ_x registers) to the

Modbus Slave. Writing any value other than 1 has no

effect. This register is automatically cleared to 0

immediately after being written with 1. The result of

the Request is stored in the RES_STATUS register.

Some Modbus slaves, especially those based on

non-deterministic systems like PCs, may not respond

well to high polling frequencies. It’s good practice to

leave a small delay between Requests if a high

polling rate is not required. Polling once every

second or every half-second are good starting points.

This is a volatile RAM register. On each power-up, it

loads its default value.

 Name: REQ_EXECUTE

 Description: Execute the Request

 Register Address: 6 (0x006)

 Default value: 0 (0x0000)

 Memory Type: Volatile RAM

 Allowed values: 0 or 1 (0x0000 or 0x0001)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 - - - - - - - -

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 - - - - - - - REQ_EXECUTE

https://www.inacks.com/

IS4320 Modbus RTU Master

30/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6.10. REQ_SLAVE Register

Modbus Slave address register.

This register contains the Modbus Slave address of

the device you are going to send the Request.

The default value is 1. Each Modbus Slave must

have a unique address, as two Slaves with the same

address will cause both devices to become

unresponsive.

Writing the special Modbus Slave address 0

broadcasts a message to all Slaves. The broadcast

operation is only valid for write Requests, i.e.,

Function Codes 15 and 16.

Addresses 1 to 247 are used for unicast messages,

that is, addressing a specific Slave. This is the most

common usage.

Values higher than 247 are not allowed by the

standard and will set the RES_STATUS register to

error number 5 (REQ_SLAVE Error).

This is a volatile RAM register. On each power-up, it

loads its default value.

Important Remark:

In a Modbus network, two slaves cannot have the

same Address ID. Doing so will cause both devices

to become unresponsive.

 Name: REQ_SLAVE

 Description: Modbus Slave Address for the Request

 Register Address: 7 (0x007)

 Default value: 1 (0x0001)

 Memory Type: Volatile RAM

 Allowed values: 1 to 247 (0x0000 to 0x00F7)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 - - - - - - - -

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 REQ_SLAVE [7 to 0]

https://www.inacks.com/

IS4320 Modbus RTU Master

31/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6.11. REQ_FC Register

Function Code Register for the Request.

This register contains the Function Code number that

will be sent in the Request.

Valid Function Codes are: FC 1, FC 2, FC 3, FC 4,

FC 15, FC 16.

Different values are not allowed and will set the

RES_STATUS register to error number 6 (REQ_FC

Error).

This is a volatile RAM register. On each power-up, it

loads its default value.

 Name: REQ_FC

 Description: Function Code for the Request

 Register Address: 8 (0x008)

 Default value: 3 (0x0003)

 Memory Type: Volatile RAM

 Allowed values: 1, 2, 3, 4, 15 and 16 (0x01, 0x02, 0x03, 0x04, 0x0F and 0x10)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 - - - - - - - -

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 - - - REQ_FC [4 to 0]

https://www.inacks.com/

IS4320 Modbus RTU Master

32/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6.12. REQ_STARTING Register

Modbus Starting Address for the Request.

This register sets the Starting Address where the

read or write Request will begin.

Rember that the Modbus memory range goes from

address 0x0000 to 0xFFFF. Setting a combination

of Starting Register + Quantity of Registers that

exceeds 0xFFFF will result in an invalid memory

area and will set the RES_STATUS register to value

202 (Modbus Exception Code 2 — ILLEGAL DATA

ADDRESS). Modbus Slaves may also trigger this

error if you attempt to access a Modbus memory

address that is not implemented.

This is a volatile RAM register. On each power-up, it

loads its default value.

 Name: REQ_STARTING

 Description: Starting Address for the Request

 Register Address: 9 (0x009)

 Default value: 0 (0x0000)

 Memory Type: Volatile RAM

 Allowed values: 0 to 65535 (0x0000 to 0xFFFF)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 REQ_STARTING [15 to 0]

https://www.inacks.com/

IS4320 Modbus RTU Master

33/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6.13. REQ_QTY Register

This register sets how many Registers or Coils will

be read or written in the Request.

The maximum Quantity depends on the Function

Code:

- FC 1 allows reading between 1 and 2000 Coils

- FC 2 allows reading between 1 and 2000

Discrete Inputs

- FC 3 allows reading between 1 and 125 Holding

Registers

- FC 4 allows reading between 1 and 125 Input

Registers

- FC 15 allows writing between 1 and 1968 Coils

- FC 16 allows writing between 1 and 123 Holding

Registers

Different values are not allowed and will set the

RES_STATUS register to error number 7

(REQ_QTY Error).

Rember that the Modbus memory range goes from

address 0x0000 to 0xFFFF. Setting a combination

of Starting Register + Quantity of Registers that

exceeds 0xFFFF will result in an invalid memory

area and will set the RES_STATUS register to value

202 (Modbus Exception Code 2 — ILLEGAL DATA

ADDRESS). Modbus Slaves may also trigger this

error if you attempt to access a Modbus memory

address that is not implemented.

This is a volatile RAM register. On each power-up, it

loads its default value.

Holding Registers and Input Registers:

For the word (16-bit) Function Codes (FC 3, FC 4,

FC 16), a Quantity of 1 register will read or write a full

register (16-bit data size).

For a write Request (FC 16), the number of

REQ_DATAx registers sent corresponds to the

REQ_QTY register; for example, setting REQ_QTY to

1 sends only REQ_DATA1, while setting REQ_QTY to

50 sends REQ_DATA1 through REQ_DATA50, and so

on.

Coils and Discrete Inputs:

For the bit Function Codes (FC 1, FC 2, FC 15), the

REQ_QTY register defines how many bits are read or

written. A Quantity of 1 affects bit 15 of the register

REQ_DATA1. A Quantity of 2 affects bits 15 and 14

of REQ_DATA1. A Quantity of 17 bits will affect bits

15 to 0 of REQ_DATA1 and bit 15 of REQ_DATA2, and

so on.

 Name: REQ_QTY

 Description: Quantity of Register/Coils to read or write for the Request

 Register Address: 10 (0x00A)

 Default value: 1 (0x0001)

 Memory Type: Volatile RAM

 Allowed values: 1 to 123/125/1968/2000 (0x0001 to 0x007B/0x007D/0x07B0/0x07D0)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 - - - - -

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 REQ_QTY [10 to 0]

https://www.inacks.com/

IS4320 Modbus RTU Master

34/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6.14. REQ_DATAx Register

REQ_DATAx registers contain the data that will be

written to the Modbus Slave when the Request is

executed.

For the 16-bit write Function Code (FC 16 – Write

Multiple Registers), the quantity of REQ_DATAx

registers to send is defined by the REQ_QTY register.

For example, if REQ_QTY = 1, only REQ_DATA1 will

be sent on the write Request. If REQ_QTY = 100

REQ_DATA1 to REQ_DATA100 will be sent.

For 1-bit write Function Code (FC 15 – Write

Multiple Coils), the number of REQ_DATAx registers

to send is the result of REQ_QTY divided by 16

(rounded up).

For example, a REQ_QTY = 100 requires

REQ_DATA1 through REQ_DATA7 (1600 coils ÷ 16

bits per register = 6.25 registers, rounded up to 7).

The following page shows a correlation between

Modbus Coils Addresses and REQ_DATAx registers.

REQ_DATAx is set and cleared by the user. The

IS4320 never changes this data.

These are volatile RAM registers. On each power-up,

they are cleared to 0.

 Name: REQ_DATAx

 Description: Data to Write to the Modbus Slave

 Register Address: 11 to 137 (0x00B to 0x089)

 Default value: 0 (0x0000)

 Memory Type: Volatile RAM

 Allowed values: 0 to 65535 (0x0000 to 0xFFFF)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 REQ_DATAx [15 to 0]

https://www.inacks.com/

IS4320 Modbus RTU Master

35/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

The table shows a correlation between Modbus Coils Addresses and REQ_DATAx registers:
C

o
il
 Q

u
a
n

ti
ty

R
E

Q
_
Q

T
Y

=
1

R
E

Q
_
Q

T
Y

=
2

R
E

Q
_
Q

T
Y

=
3

R
E

Q
_
Q

T
Y

=
4

R
E

Q
_
Q

T
Y

=
5

R
E

Q
_
Q

T
Y

=
6

R
E

Q
_
Q

T
Y

=
7

R
E

Q
_
Q

T
Y

=
8

R
E

Q
_
Q

T
Y

=
9

R
E

Q
_
Q

T
Y

=
1

0

R
E

Q
_
Q

T
Y

=
1

1

R
E

Q
_
Q

T
Y

=
1

2

R
E

Q
_
Q

T
Y

=
1

3

R
E

Q
_
Q

T
Y

=
1

4

R
E

Q
_
Q

T
Y

=
1

5

R
E

Q
_
Q

T
Y

=
1

6

R
E

Q
_
Q

T
Y

=
1

7

R
E

Q
_
Q

T
Y

=
1

8

R
E

Q
_
Q

T
Y

=
1

9

R
E

Q
_
Q

T
Y

=
2

0

R
E

Q
_
Q

T
Y

=
2

1

R
E

Q
_
Q

T
Y

=
2

2

R
E

Q
_
Q

T
Y

=
2

3

R
E

Q
_
Q

T
Y

=
2

4

R
E

Q
_
Q

T
Y

=
2

5

R
E

Q
_
Q

T
Y

=
2

6

R
E

Q
_
Q

T
Y

=
2

7

R
E

Q
_
Q

T
Y

=
2

8

R
E

Q
_
Q

T
Y

=
2

9

R
E

Q
_
Q

T
Y

=
3

0

R
E

Q
_
Q

T
Y

=
3

1

R
E

Q
_
Q

T
Y

=
3

2

R
E

Q
_
Q

T
Y

=
3

3

…

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 …

R
E

Q
_
D

A
T

A
x

R
e
g

is
te

r

REQ_DATA1 REQ_DATA2 REQ…

…

R
E

Q
_
Q

T
Y

=
1

9
3

6

R
E

Q
_
Q

T
Y

=
1

9
3

7

R
E

Q
_
Q

T
Y

=
1

9
3

8

R
E

Q
_
Q

T
Y

=
1

9
3

9

R
E

Q
_
Q

T
Y

=
1

9
4

0

R
E

Q
_
Q

T
Y

=
1

9
4

1

R
E

Q
_
Q

T
Y

=
1

9
4

2

R
E

Q
_
Q

T
Y

=
1

9
4

3

R
E

Q
_
Q

T
Y

=
1

9
4

4

R
E

Q
_
Q

T
Y

=
1

9
4

5

R
E

Q
_
Q

T
Y

=
1

9
4

6

R
E

Q
_
Q

T
Y

=
1

9
4

7

R
E

Q
_
Q

T
Y

=
1

9
4

8

R
E

Q
_
Q

T
Y

=
1

9
4

9

R
E

Q
_
Q

T
Y

=
1

9
5

0

R
E

Q
_
Q

T
Y

=
1

9
5

1

R
E

Q
_
Q

T
Y

=
1

9
5

2

R
E

Q
_
Q

T
Y

=
1

9
5

3

R
E

Q
_
Q

T
Y

=
1

9
5

4

R
E

Q
_
Q

T
Y

=
1

9
5

5

R
E

Q
_
Q

T
Y

=
1

9
5

6

R
E

Q
_
Q

T
Y

=
1

9
5

7

R
E

Q
_
Q

T
Y

=
1

9
5

8

R
E

Q
_
Q

T
Y

=
1

9
5

9

R
E

Q
_
Q

T
Y

=
1

9
6

0

R
E

Q
_
Q

T
Y

=
1

9
6

1

R
E

Q
_
Q

T
Y

=
1

9
6

2

R
E

Q
_
Q

T
Y

=
1

9
6

3

R
E

Q
_
Q

T
Y

=
1

9
6

4

R
E

Q
_
Q

T
Y

=
1

9
6

5

R
E

Q
_
Q

T
Y

=
1

9
6

6

R
E

Q
_
Q

T
Y

=
1

9
6

7

R
E

Q
_
Q

T
Y

=
1

9
6

8

… 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REQ… REQ_DATA122 REQ_DATA123

https://www.inacks.com/

IS4320 Modbus RTU Master

36/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6.15. RES_STATUS Register

When you execute a Modbus Request by writing 1 to

the REQ_EXECUTE register, the result of the

operation is shown in RES_STATUS.

If the Modbus Slave has received and accepted the

Request, RES_STATUS will be set to 2 (Sent and

Received). If the Modbus Slaves did not respond to

the Request, the register will be set to 3 (Sent and

Timeout).

While you are configuring the Request registers

(REQ_SLAVE, REQ_FC and REQ_QTY),

REQ_STATUS is set to 0 (Ready to Send) if all the

Request Registers have a valid configuration, or to

5, 6 or 7 if there is an error.

This is a Read Only register.

 Name: RES_STATUS

 Description: Response Status

 Register Address: 138 (0x08A)

 Default value: 0 (0x0000)

 Memory Type: Volatile RAM, Read Only

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 - - - - - - - -

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 RES_STATUS [7 to 0]

Value Description Details

0 Ready to Send
Request registers REQ_SLAVE, REQ_FC, and REQ_QTY are valid, so the Request can be sent to
the Modbus Slave.

1 Sent and Waiting

The Request was sent to the Modbus Slave, and the IS4320 is waiting for the answer. The maximum
waiting time is set in the CFG_MB_TIMEOUT register.
You must wait for either a Response or a timeout. No other Request should be executed while waiting
for the Response.

2 Sent and Received The Modbus Slave has confirmed the reception of the Request.

3 Sent and Timeout
The Request was sent, but no Response was received from the Modbus slave.
You are free to try again or perform a diferent Request.
You should assume the Request was not received.

4 Broadcast Sent
A broadcast message has been sent.
Modbus slaves do not confirm broadcast messages, so the IS4320 is ready for the next operation.

5 REQ_SLAVE Error

The value in the REQ_SLAVE register is not valid.
This register contains the Modbus Slave ID, which identifies the device on the Modbus bus.
Valid Slave IDs are 1 to 247.
ID address 0 (Broadcast) is only valid with FC 15 and FC 16.
The Request was not sent.

6 REQ_FC Error
The value in the REQ_FC register is not valid.
Valid Function Codes are: FC 1, FC 2, FC 3, FC 4, FC 15, FC 16.
The Request was not sent.

7 REQ_QTY Error

The value in the REQ_QTY register is not valid.
The minimum must be 1, and the maximum depends on the Function Code:
FC 1: Max read 2000 Coils
FC2: Max read 2000 Discrete Inputs
FC 3: Max read 125 Holding Registers
FC 4: Max read 125 Input Registers
FC 15: Max write 1968 Coils
FC 16: Max write 125 Holding Registers
The Request was not sent.

8 Frame Error
An invalid Response has been received.
Possible causes include: non-Modbus data, CRC error, or incorrectly built Modbus data frame.

201 Modbus Exception Code 1 ILLEGAL FUNCTION

202 Modbus Exception Code 2 ILLEGAL DATA ADDRESS

203 Modbus Exception Code 3 ILLEGAL DATA VALUE

204 Modbus Exception Code 4 SERVER DEVICE FAILURE

https://www.inacks.com/

IS4320 Modbus RTU Master

37/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

6.16. RES_DATAx Register

RES_DATAx registers contain the data received

from the Modbus Slave when a read Request was

executed.

For 16-bit Read Function Code (FC 3, FC 4), the

quantity of RES_DATAx registers received is defined

by the REQ_QTY register in the Request.

For example, Requesting 1 register (REQ_QTY = 1)

will fill only RES_DATA1. Requesting 100 registers

(REQ_QTY = 100) will fill RES_DATA1 through

RES_DATA100. The remaining RES_DATAx registers

will be cleared to 0.

For 1-bit Read Function Codes (FC 1, FC 2), the

number of REQ_DATAx registers received is the

result of REQ_QTY divided by 16 (rounded up).

For example, Requesting 1 coil (REQ_QTY = 1) will

fill only bit 15 of RES_DATA1. Requesting 100 coils

(REQ_QTY = 100) will fill RES_DATA1 through

RES_DATA7 (100 coils ÷ 16 bits per register = 6.25,

rounded up to 7). The remaining RES_DATAx bits

and registers will be cleared to 0.

The following page shows the correlation between

Modbus Coils Addresses and REQ_DATAx registers.

When executing a Write Function Code (FC 15,

FC16), these registers are cleared to 0.

These are volatile RAM registers. On each power-up,

they are cleared to 0.

 Name: RES_DATAx

 Description: Data Read from the Modbus Slave

 Register Address: 139 to 263 (0x08B to 0x107)

 Default value: 0 (0x0000)

 Memory Type: Volatile RAM, Read Only

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 RES_DATAx [15 to 0]

https://www.inacks.com/

IS4320 Modbus RTU Master

38/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

The table shows a correlation between Modbus Coils Addresses and RES_DATAx registers:
C

o
il
 A

d
d

re
s
s

R
E

Q
_
Q

T
Y

=
1

R
E

Q
_
Q

T
Y

=
2

R
E

Q
_
Q

T
Y

=
3

R
E

Q
_
Q

T
Y

=
4

R
E

Q
_
Q

T
Y

=
5

R
E

Q
_
Q

T
Y

=
6

R
E

Q
_
Q

T
Y

=
7

R
E

Q
_
Q

T
Y

=
8

R
E

Q
_
Q

T
Y

=
9

R
E

Q
_
Q

T
Y

=
1

0

R
E

Q
_
Q

T
Y

=
1

1

R
E

Q
_
Q

T
Y

=
1

2

R
E

Q
_
Q

T
Y

=
1

3

R
E

Q
_
Q

T
Y

=
1

4

R
E

Q
_
Q

T
Y

=
1

5

R
E

Q
_
Q

T
Y

=
1

6

R
E

Q
_
Q

T
Y

=
1

7

R
E

Q
_
Q

T
Y

=
1

8

R
E

Q
_
Q

T
Y

=
1

9

R
E

Q
_
Q

T
Y

=
2

0

R
E

Q
_
Q

T
Y

=
2

1

R
E

Q
_
Q

T
Y

=
2

2

R
E

Q
_
Q

T
Y

=
2

3

R
E

Q
_
Q

T
Y

=
2

4

R
E

Q
_
Q

T
Y

=
2

5

R
E

Q
_
Q

T
Y

=
2

6

R
E

Q
_
Q

T
Y

=
2

7

R
E

Q
_
Q

T
Y

=
2

8

R
E

Q
_
Q

T
Y

=
2

9

R
E

Q
_
Q

T
Y

=
3

0

R
E

Q
_
Q

T
Y

=
3

1

R
E

Q
_
Q

T
Y

=
3

2

R
E

Q
_
Q

T
Y

=
3

3

…

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 …

R
E

S
_
D

A
T

A
x

R
e
g

is
te

r

RES_DATA1 RES_DATA2 RES…

…

R
E

Q
_
Q

T
Y

=
1

9
6

8

R
E

Q
_
Q

T
Y

=
1

9
6

9

R
E

Q
_
Q

T
Y

=
1

9
7

0

R
E

Q
_
Q

T
Y

=
1

9
7

1

R
E

Q
_
Q

T
Y

=
1

9
7

2

R
E

Q
_
Q

T
Y

=
1

9
7

3

R
E

Q
_
Q

T
Y

=
1

9
7

4

R
E

Q
_
Q

T
Y

=
1

9
7

5

R
E

Q
_
Q

T
Y

=
1

9
7

6

R
E

Q
_
Q

T
Y

=
1

9
7

7

R
E

Q
_
Q

T
Y

=
1

9
7

8

R
E

Q
_
Q

T
Y

=
1

9
7

9

R
E

Q
_
Q

T
Y

=
1

9
8

0

R
E

Q
_
Q

T
Y

=
1

9
8

1

R
E

Q
_
Q

T
Y

=
1

9
8

2

R
E

Q
_
Q

T
Y

=
1

9
8

3

R
E

Q
_
Q

T
Y

=
1

9
8

4

R
E

Q
_
Q

T
Y

=
1

9
8

5

R
E

Q
_
Q

T
Y

=
1

9
8

6

R
E

Q
_
Q

T
Y

=
1

9
8

7

R
E

Q
_
Q

T
Y

=
1

9
8

8

R
E

Q
_
Q

T
Y

=
1

9
8

9

R
E

Q
_
Q

T
Y

=
1

9
9

0

R
E

Q
_
Q

T
Y

=
1

9
9

1

R
E

Q
_
Q

T
Y

=
1

9
9

2

R
E

Q
_
Q

T
Y

=
1

9
9

3

R
E

Q
_
Q

T
Y

=
1

9
9

4

R
E

Q
_
Q

T
Y

=
1

9
9

5

R
E

Q
_
Q

T
Y

=
1

9
9

6

R
E

Q
_
Q

T
Y

=
1

9
9

7

R
E

Q
_
Q

T
Y

=
1

9
9

8

R
E

Q
_
Q

T
Y

=
1

9
9

9

R
E

Q
_
Q

T
Y

=
2

0
0

0

… 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES… RES_DATA124 RES_DATA125

https://www.inacks.com/

IS4320 Modbus RTU Master

39/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

7. I2C Description
The IS4320 operates as a slave in the I2C-Serial

Interface. It supports Standard Mode (100kHz), Fast

Mode (400kHz), and Fast Mode Plus (1MHz). The

I2C-Master device, typically a microcontroller or a

microprocessor, initiates and manages all read and

write operations to the IS4320 (I2C-Slave device).

The IS4320 is represented on the bus by the I2C

device address: 20 (0x14).

Pull-up resistors are required on the SCL and SDA

lines for proper operation. The resistor values

depend on the bus capacitance and operating speed.

Typical values are 4.7kΩ for Standard Mode

(100kHz) and 2kΩ for Fast Mode and Fast Mode Plus

(400kHz and 1MHz).

The IS4320's high state can be either 3.3V or 5V. A

logical '0' is transmitted by pulling the line low, while

a logical '1' is transmitted by releasing the line,

allowing it to be pulled high by the pull-up resistor.

The Master controls the Serial Clock (SCL) line,

which generates the synchronous clock used by the

Serial Data (SDA) line to transmit data.

A Start or Stop condition occurs when the SDA line

changes during the High period of the SCL line. Data

on the SDA line must be 8 bits long and is transmitted

Most Significant Bit First and Most Significant Byte

First. After the 8 data bits, the receiver must respond

with either an acknowledge (ACK) or a no-

acknowledge (NACK) bit during the ninth clock cycle,

which is generated by the Master. To keep the bus in

an idle state, both the SCL and SDA lines must be

released to the High state.

The memory map addressing (pointer register) is 16

bits wide, which means 2 bytes are required to set

the target address for any I2C read or write

operation. The memory map itself contains 263

registers, each 16 bits wide. Therefore, 2 bytes of

data are needed to read from or write to each IS4320

register.

The operability of the Read and Write commands of

the IS4320 is very similar to an EEPROM memory.

Thinking of the IS4320 as an EEPROM memory is a

good analogy to quickly understand how to

communicate with its memory map.

7.1. Highlights

- I2C Device Address: 20 (0x14)

- I2C Memory Map Register Size and Addressing Size: 16 bits, composed of two bytes — first the MSB,

then the LSB.

- Compatible I2C Speeds:

- Standard Mode (100kHz), recommended SCL and SDA pull-up value: 4.7kΩ

- Fast Mode (400kHz), recommended SCL and SDA pull-up value: 2kΩ

- Fast Mode Plus (1MHz), recommended SCL and SDA pull-up value: 2kΩ

- I2C Supported Operations:

- Single-Byte Write

- Multiple-Byte Write (up to 264 registers)

- Single-Byte Read

- Multiple-Byte Read (up to 264 registers)

- I2C Clock Stretching: Required.

- I2C Read Timeout: Should be set to twice the value of CFG_MB_TIMEOUT. By default, configure your I2C

timeout to 2000 ms.

- Overreading and Overwriting the memory:

- If a write operation starts at a valid memory address (0 to 263) and continues past the last valid address,

it will roll over to address 0.

- Starting a write operation to an invalid memory address (greater than 263) will result in a NACK and data

will be discarded.

- If a read operation starts at a valid memory address (0 to 263) and continues past the last valid address, it

will roll over to address 0.

- Starting a read operation at an invalid memory address (greater than 263) will return a value of 0xFFFF.

https://www.inacks.com/

IS4320 Modbus RTU Master

40/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

7.2. Read Operations

7.2.1. Single Word Read

Reading a single word is an action performed by the

Microcontroller (I2C-Master) to access any register

within the IS4320 memory (I2C-Slave), regardless of

the last read or written position. To perform this

action, the microcontroller must first load the address

of the IS4320 register to be read into the IS4320's

internal Pointer Register. Once the address is set, the

microcontroller can retrieve the data from the

specified register.

To initiate the Single Word Read operation, the

microcontroller begins by pulling down the SDA while

the SCL is high to create a Start Condition. It then

sends the IS4320 I2C Device Address (0x14) with the

R/W bit set to '0' (write). Upon receiving the device

address, the IS4320 acknowledges it. Subsequently,

the microcontroller sends the two bytes of the Pointer

Register address: the most significant byte first,

followed by the less significant byte, each

acknowledged by the IS4320. This sets the address

of the next word to be read in the Pointer Register.

Next, the content of the Pointer Register, which is a

word (two bytes), needs to be read.

The microcontroller generates a Repeated Start

Condition, followed by the IS4320 I2C Device

Address (0x14) with the R/W bit set to '1' (read),

instructing the IS4320 to retrieve data. The IS4320

acknowledges and responds with the most significant

byte, which the microcontroller acknowledges. Then,

the IS4320 sends the less significant byte, which the

microcontroller does not acknowledge (NACK).

Finally, the microcontroller issues a Stop Condition

by raising the SDA line while the SCL is high.

Invalid Memory Addressing

The valid memory range of the IS4320 goes from

addresses 0 to 263. If a Read Operation is performed

with a Pointer Register higher than 263, the read

result will be 0xFFFF.

https://www.inacks.com/

IS4320 Modbus RTU Master

41/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

7.2.2. Multiple Word Read

Multiple Word Read functions similarly to Single

Word Read but can read a block of up to 264

registers in a single operation. Remember, the

registers are 16-bit words consisting of 2 bytes, so

the number of registers retrieved should always be

even.

To perform a Multiple Word Read, follow the same

procedure as for a Single Word Read until the first

data word is received. After receiving the first word,

instead of generating a Not Acknowledge (NACK),

the microcontroller should continue acknowledging

(ACK) each received data byte from the IS4320 for

as many words as it intends to read. To conclude the

read operation, after reading the last data word, the

microcontroller should generate a Not Acknowledge

(NACK) and a Stop Condition.

With each word read, the Pointer Register

increments by one.

Invalid Memory Addressing

The valid memory range of the IS4320 goes from

addresses 0 to 263.

If the Read Operation is performed with a Pointer

Register within the valid memory range (0 to 263),

but the data retrieval extends beyond register 263, a

rollover to position 0 will occur. For example, the

value of register 264 will correspond to the content of

register 0.

If a Read Operation is performed with a Pointer

Register value higher than 263, the read result will be

0xFFFF.

https://www.inacks.com/

IS4320 Modbus RTU Master

42/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

7.3. Write Operations

7.3.1. Single Word Write

Writing a single word is an action performed by the

Microcontroller (I2C-Master) to write data to any

register within the IS4320 memory (I2C-Slave),

regardless of the last read or written position. To

perform this action, the Microcontroller must first load

the address of the IS4320 register to be written into

the IS4320's internal Pointer Register. Once the

address is set, the Microcontroller can send the data

to be stored.

To initiate the Single Word Write operation, the

Microcontroller begins by pulling down the SDA line

while the SCL line is high, creating a Start Condition.

It then sends the IS4320 I2C Device Address (0x14)

with the R/W bit set to '0' (write). Upon receiving the

device address, the IS4320 acknowledges it.

Subsequently, the Microcontroller sends the two

bytes of the Pointer Register address: the most

significant byte first, followed by the least significant

byte, each acknowledged by the IS4320. This sets

the address of the next word to be written in the

Pointer Register, preparing the device to receive the

data.

The Microcontroller then sends the most significant

byte of the word to be written first, which the IS4320

acknowledges. The Microcontroller follows by

sending the least significant byte of the word, which

the IS4320 also acknowledges. Finally, the

Microcontroller issues a Stop Condition by raising the

SDA line while the SCL line is high.

Invalid Memory Addressing

The valid memory range of the IS4320 goes from

addresses 0 to 263. If a Write Operation is performed

with a Pointer Register higher than 263, the IS4320

will answer with a NACK on the first received byte of

the word.

https://www.inacks.com/

IS4320 Modbus RTU Master

43/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

7.3.2. Multiple Word Write

A Multiple Word Write performs a similar operation to

a Single Word Write, but instead of writing to only one

register, it can write to a block of up to 264 registers

in a single operation.

To perform a Multiple Word Write, follow the same

procedure as for a Single Word Write until the first

data word is received. After receiving the first word,

instead of generating a Stop Condition, the

Microcontroller should continue sending data words.

To conclude the write operation, after sending the

last data word, the Microcontroller should generate a

Stop Condition.

With each word written, the Pointer Register

increments by one.

Invalid Memory Addressing

The valid memory range of the IS4320 goes from

addresses 0 to 263.

If a Write Operation is performed with a Pointer

Register within the valid memory range (0 to 263) but

exceeds the last memory register (263), a rollover to

position 0 will occur. For example, writing a value to

register 264 will result in writing the value to register

0.

If a Write Operation is performed with a Pointer

Register higher than 263, the IS4320 will answer with

a NACK on the first received byte of the word.

https://www.inacks.com/

IS4320 Modbus RTU Master

44/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

8. Mechanical

https://www.inacks.com/

IS4320 Modbus RTU Master

45/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

https://www.inacks.com/

IS4320 Modbus RTU Master

46/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

9. Hardware Examples
The following chapter represents an application design example for explanation proposals and is not part of the

product standard. The customer must design his own solution, choose its most appropriate components and

validate the final product according to the legislation and the Modbus specifications.

9.1. RS485 Example

This example shows the design of a Modbus over Serial Line working in RS485.

Block A: Connector

Typical Modbus Serial Line connectors include

Screw Terminals, RJ45, and D-Sub 9-pin (commonly

known as DB9), among others. The device-side

connector must be female, while the cable-side

connector must be male.

The recommended connector is RJ45, but in the

schematic, a screw terminal is used for simplicity.

When selecting a connector, always choose the

shielded version if available. RJ45 and DB9

connectors typically come with shielded options,

while terminal blocks usually do not.

On the cable-side connector, make sure to connect

the cable shield to the connector shield to ensure

proper electrical continuity across all cable shields

on the bus.

Do not connect the shield to the Common. All cable

shields should be connected to Common and

Protective Ground at a single point for the entire bus,

ideally at the master device.

In the example, the connector has three positions: A,

B, and Common. A and B are the differential lines for

the transceiver, while Common serves as the

reference point for the A and B signals. Common

must be connected to the GND of your circuit.

Optionally, power can be supplied to your system

through the Modbus connector. In this case, a four-

position connector would be used for A, B, Common,

and Power. In that case, the Common serves as the

reference for A and B signals as well as the return

path for Power. The voltage should be within the 5V

to 24V range.

Block B: Protection & Line Polarization

Protection

The protection stage is influenced by several factors,

including the intrinsic robustness and protection

features of the transceiver, the potential harshness

of the fieldbus environment, the product's budget,

and its required reliability, among other

considerations. Refer to your transceiver's

documentation to determine the appropriate

protection requirements.

In the schematic, a bidirectional 400-W transient

suppressor diodes are used to protect against surge

transients.

Line Terminator

Reflections on a transmission line occur whenever

there’s an impedance mismatch that a traveling

wave encounters as it moves along the line. To

reduce reflections at the ends of an RS485 cable, a

line termination should be placed near each end of

the bus. Terminating both ends is crucial because

signals travel in both directions, but no more than two

terminators should be used on the same bus. The

line terminator connects across the balanced lines

(cable A and B) and is typically a 150 Ω resistor rated

at 0.5 W.

Line Polarization

Line polarization is not shown in the example, but it

is explained because it is required for some

transceivers.

Line Polarization is the process of biasing the RS485

bus to a known state by pulling signal A down and

pulling signal B to 5V using resistors in the range of

https://www.inacks.com/

IS4320 Modbus RTU Master

47/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

450 to 650Ω. This ensures that the bus has a defined

idle state.

When there is no data activity on an RS-485

balanced pair, the lines are not actively driven and

are therefore susceptible to external noise or

interference. To ensure that the transceiver remains

in a stable state when no data signal is present,

some transceivers require a biasing circuit. However,

not all transceivers need this.

When selecting your transceiver, confirm in the

datasheet whether line polarization is necessary or

not. If it is necessary, you must document it in the

product guide.

If polarization is needed, it should ONLY be

implemented at one location on the bus, typically at

the master device.

Bus polarization is a good technic to increase the

resistance of the bus to external noise or

interferences. However, it has the drawback of

significantly reducing the number of devices that can

support the bus.

Block C: Transceiver

Modbus over Serial Line typically employs the

RS485 electrical interface, which uses a transceiver

to adapt RS485 fieldbus voltage levels to TTL

voltage levels for the IS4320. Other electrical

interfaces such as RS422 or RS232 can also be

utilized. In the example, RS485 is being used.

A pull-down resistor on DE and RE will keep the

transceiver in ‘receiver’ state by default, ensuring it

does not disturb the fieldbus. Pull-up resistor on RO

will keep the RX line clear for the microcontroller.

Using a 5V transceiver is a good technic to increase

the resistance of the bus to external noise or

interferences. 5V transceivers can be used directly

with the IS4320 since TX, RX and DIR pins are 5V

tolerant.

Block D: IS4320 Modbus RTU Slave

The IS4320 is very simple to integrate into your

design.

A decoupling capacitor should be placed on the

power pins (VDD and VSS). It is recommended to

use a 100 nF, 10-25 V low-ESR ceramic capacitor.

The I2CSPD pin defines the I2C speed. Connect this

pin to GND for a speed of 100 kHz. For 400 kHz, it

should be pulled to 1.65 V, which is half of 3.3 V. This

can be achieved with a simple resistor voltage divider

using 3.3 V and GND. For 1 MHz, the pin must be

connected to 3.3 V. The maximum allowed voltage

on this pin is 4 V.

Block E: I2C-Serial Interface

For proper operation of the I2C-Serial Interface,

pull-up resistors to 3.3 V or 5V are necessary.

Typical resistor values are 4.7 kΩ for Standard Mode

(100 kHz) and 2 kΩ for both Fast Mode (400 kHz)

and Fast Mode Plus (1 MHz).

Block F: Your Application

Here is the rest of your product design. Typically, a

microcontroller interfaces with the IS4320, but a

microprocessor or a single-board computer, such as

a Raspberry Pi, can also be used as long as they are

equipped with an I2C-Serial Interface.

https://www.inacks.com/

IS4320 Modbus RTU Master

48/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

9.2. Isolated RS485 Example

This example shows the design of a Modbus over Serial Line working in isolated RS485.

https://www.inacks.com/

IS4320 Modbus RTU Master

49/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

9.3. RS232 Example

This example shows the design of a Modbus over Serial Line working in RS232.

You can use any RS232 transceiver together with the IS4320. In the figure below the MAX3221 is used.

The required signals on the connector are TXD, RXD and Common.

Use short cables, it’s recommended to use less than 20 m.

Cable pinout must be direct pin to pin and never use crossed cables.

https://www.inacks.com/

IS4320 Modbus RTU Master

50/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

9.4. Bus Topology

In an RS485 setup without a repeater, a single trunk cable runs through the system, with devices connected in a

daisy-chain manner. Short cables derivations (stubs) are also allowed but not recommended. Keep the derivation

distance as short as possible. Other topologies are not allowed.

https://www.inacks.com/

IS4320 Modbus RTU Master

51/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

9.5. Cable Wiring

https://www.inacks.com/

IS4320 Modbus RTU Master

52/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

10. Firmware Examples
The following chapter presents firmware examples for different platforms for demonstration purposes only and is

not part of the product standard. Customers must develop their own firmware, perform all necessary tests, and

validate the final product according to applicable regulations and Modbus specifications.

10.1. Arduino Example

Coding with Arduino for the IS4320 is very simple. It does not require any INACKS-specific library, just the standard

Arduino Wire (I2C) functions: Wire.write(), Wire.read() and related.

This Arduino example is based on the Arduino UNO board, and the Kappa4320Ard Evaluation Board, which

features the IS4320 chip. The Kappa4320Ard has an Arduino form factor and directly fits into the Arduino UNO

board, so no additional connections between the Arduino and the IS4320 are required, making it very easy to test

the example.

The project demonstrates how to use the Arduino to communicate with the IS4320 over I2C. In the example, the

Arduino instructs the IS4320 (Modbus Master) to read Holding Register 0 using the Function Code 3 from a Modbus

Slave, and prints the result via Serial Port.

To test the example, you will need a Modbus Slave. You can use the pyModSlave software to create a Modbus

Slave. Configure the Slave with these values: Slave Address 1, 19200 baud, Even parity, and 1 Stop bit.

You can download this Arduino project at: https://github.com/inacks/ISXMPL4320ex5

#include <Wire.h>

// IS4320 Memory Map Addresses:
#define CFG_MBBDR 0
#define CFG_MBPAR 1
#define CFG_MBSTP 2
#define REQ_EXECUTE 6
#define REQ_SLAVE 7
#define REQ_FC 8
#define REQ_STARTING 9
#define REQ_QTY 10
#define RES_STATUS 138
#define RES_DATA1 139

void writeIS4320Register(uint16_t registerAdressToWrite, uint16_t value) {
 Wire.beginTransmission(0x14); // I2C address of the IS4320.

 // Send the 16-bit Holding Register address (2 bytes).
 Wire.write((registerAdressToWrite >> 8) & 0xFF); // High byte.
 Wire.write(registerAdressToWrite & 0xFF); // Low byte.

 // Send the 16-bit data (2 bytes).
 Wire.write((value >> 8) & 0xFF); // High byte.
 Wire.write(value & 0xFF); // Low byte.

 Wire.endTransmission();
}

uint16_t readIS4320Register(uint16_t holdingRegisterAddress) {
 uint16_t result; // Variable to store the read data.

 Wire.beginTransmission(0x14); // I2C address of the IS4320.

 // Send the 16-bit Holding Register address (2 bytes).
 Wire.write((holdingRegisterAddress >> 8) & 0xFF); // High byte.
 Wire.write(holdingRegisterAddress & 0xFF); // Low byte.
 Wire.endTransmission(false); // Send a repeated start condition.

 // Request 2 bytes from the IS4320 (a full 16-bit Holding Register).
 Wire.requestFrom(0x14, 2);
 result = Wire.read(); // Read high byte.
 result <<= 8; // Shift to make space for low byte.
 result |= Wire.read(); // Read and append low byte.

 return result; // Return the full 16-bit value.

https://www.inacks.com/
https://www.inacks.com/kappa4320ard
https://www.sourceforge.net/projects/pymodslave
https://github.com/inacks/ISXMPL4320ex5

IS4320 Modbus RTU Master

53/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

}

void setup() {
 Wire.begin(); // Initialize the I2C interface.
 Serial.begin(9600); // Initialize the serial port for debug printing.

 /* First, configure the Modbus communication parameters
 * to match the slave characteristics.
 * This only needs to be done once before communicating
 * with a Modbus device that has a different configuration. */

 // Set baud rate to 19200:
 uint16_t baudRate = 113;
 writeIS4320Register(CFG_MBBDR, baudRate);

 // Set parity to Even:
 uint16_t parityBit = 122;
 writeIS4320Register(CFG_MBPAR, parityBit);

 // Set stop bits to 1:
 uint16_t stopBits = 131;
 writeIS4320Register(CFG_MBSTP, stopBits);

}

void loop() {
 /* Example: Read Holding Register 0 and print its value
 * to the PC via the Serial port */

 // Set the Modbus Slave ID:
 uint16_t modbusSlaveId = 1;
 writeIS4320Register(REQ_SLAVE, modbusSlaveId);

 // Set the Function Code. For reading Holding Registers, use FC = 3:
 uint16_t functionCode = 3;
 writeIS4320Register(REQ_FC, functionCode);

 // Set the Starting Register address. Here we want to read Holding Register 0:
 uint16_t startingRegister = 0;
 writeIS4320Register(REQ_STARTING, startingRegister);

 // Set the number of Holding Registers to read (minimum is 1):
 uint16_t quantity = 1;
 writeIS4320Register(REQ_QTY, quantity);

 // Send the Request to the Modbus Slave:
 writeIS4320Register(REQ_EXECUTE, 1);

 // Read back the result/status of the operation:
 uint16_t status = readIS4320Register(RES_STATUS);

 if (status == 2) {
 // OK! The Request was sent and a Response was received
 // Read the data:
 uint16_t holdingRegisterData = readIS4320Register(RES_DATA1);
 Serial.print("Holding Register 0 content = ");
 Serial.println(holdingRegisterData);
 }
 else if (status == 3) {
 // Timeout: no Response from the Modbus Slave
 Serial.println("Timeout, the slave did not answer.");
 Serial.println("Did you start the pyModSlave? Did you set its configuration to: Slave Address
1, 19200 baud, Even parity, and 1 Stop bit?");
 }
 else if (status == 4) {
 Serial.println("Broadcast message sent.");
 }
 else if (status == 5) {
 Serial.println("You configured wrongly the REQ_SLAVE register.");
 }
 else if (status == 6) {
 Serial.println("You configured wrongly the REQ_FC register.");
 }
 else if (status == 7) {

https://www.inacks.com/

IS4320 Modbus RTU Master

54/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

 Serial.println("You configured wrongly the REQ_QTY register.");
 }
 else if (status == 8) {
 Serial.println("There was a Frame Error.");
 }
 else if (status == 201) {
 Serial.println("Modbus Exception Code 1: Illegal Function.");
 }
 else if (status == 202) {
 Serial.println("Modbus Exception Code 2: Illegal Data Address.");
 Serial.println("If using pyModSlave, make sure the 'Start Addr' parameter is set to 0.");
 }
 else if (status == 203) {
 Serial.println("Modbus Exception Code 3: Illegal Data Value.");
 }
 else if (status == 204) {
 Serial.println("Modbus Exception Code 4: Server Device Failure.");
 }
 else {
 Serial.println("Unkown Error");
 }

 // Add a delay to give the Modbus Slave time to respond and avoid stressing it:
 delay(1000);

}

https://www.inacks.com/

IS4320 Modbus RTU Master

55/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

10.2. STM32 Example

Coding with STM32 for the IS4320 is very simple. It does not require any INACKS-specific library, just the standard HAL I2C functions: HAL_I2C_Mem_Read() and

HAL_I2C_Mem_Write().

This STM32 CubeIDE project is based on the Nucleo-C071 evaluation board from ST, which features an STM32C071RBT microcontroller, and the Kappa4320Ard Evaluation

Board, which features the IS4320 chip. The Kappa4320Ard has an Arduino form factor and directly fits into the Nucleo-C071 board, so no additional connections between the

Nucleo and the IS4320 are required, making it very easy to test the example.

The project demonstrates how to use the STM32 microcontroller to communicate with the IS4320 over I2C. In this example, the microcontroller instructs the IS4320 to read

Holding Register 0 using the Function Code 3 from a Modbus Slave, and prints the result via the STLink Virtual COM Port. You can view the output using any serial terminal

software, such as CoolTerm.

To test the example, you will need a Modbus Slave. You can use the pyModSlave software to create a Modbus Slave. Configure the Slave with these values: Slave Address 1,

19200 baud, Even parity, and 1 Stop bit.

For clarity purposes, the code below excludes all extra HAL code and only shows the parts relevant to the IS4320.

You can download the full STM32 project example at: https://github.com/inacks/ISXMPL4320ex6

#include <stdio.h>

// IS4320 Memory Map Addresses:

#define CFG_MBBDR 0

#define CFG_MBPAR 1

#define CFG_MBSTP 2

#define REQ_EXECUTE 6

#define REQ_SLAVE 7

#define REQ_FC 8

#define REQ_STARTING 9

#define REQ_QTY 10

#define RES_STATUS 138

#define RES_DATA1 139

/**

 * @brief Reads a single register from the IS4320 memory map.

 * @param registerAdressToRead: Address in the IS4320 memory map to be read.

 * @retval Value stored at the registerAdressToRead register address.

 */

uint16_t readIS4320Register(uint16_t registerAdressToRead) {

 uint8_t IS4320_I2C_Chip_Address; // This variable stores the I2C chip address of the IS4320.

 IS4320_I2C_Chip_Address = 0x14; // The IS4320's I2C address is 0x14.

 // The STM32 HAL I2C library requires the I2C address to be shifted left by one bit.

 // Let's shift the IS4320 I2C address accordingly:

https://www.inacks.com/
https://www.st.com/en/evaluation-tools/nucleo-c071rb.html
https://www.inacks.com/kappa4320ard
https://freeware.the-meiers.org/
https://www.sourceforge.net/projects/pymodslave
https://github.com/inacks/ISXMPL4320ex6

IS4320 Modbus RTU Master

56/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

 IS4320_I2C_Chip_Address = IS4320_I2C_Chip_Address << 1;

 // The following array will store the read data.

 // Since each holding register is 16 bits long, reading one register requires reading 2 bytes.

 uint8_t readResultArray[2];

 // This variable will contain the final result:

 uint16_t readResult;

 /*

 * This is the HAL function to read from an I2C memory device. The IS4320 is designed to operate as an I2C memory.

 *

 * HAL_I2C_Mem_Read parameters explained:

 * 1. &hi2c1: This is the name of the I2C that you're using. You set this in the CubeMX. Don't forget the '&'.

 * 2. IS4320_I2C_Chip_Address: The I2C address of the IS4320 (must be left-shifted).

 * 3. registerAdressToRead: The holding register address to read from the IS4320.

 * 4. I2C_MEMADD_SIZE_16BIT: You must indicate the memory addressing size. The IS4320 memory addressing is 16-bits.

 * This keyword is an internal constant of HAL libraries. Just write it.

 * 5. readResultArray: An 8-bit array where the HAL stores the read data.

 * 6. 2: The number of bytes to read. Since one holding register is 16 bits, we need to read 2 bytes.

 * 7. 1500: Timeout in milliseconds. IMPORTANT, this timeout must be higher than the timeout specified in CFG_MB_TIMEOUT.

 * 1500 is a good default value.

 */

 HAL_I2C_Mem_Read(&hi2c1, IS4320_I2C_Chip_Address, registerAdressToRead, I2C_MEMADD_SIZE_16BIT, readResultArray, 2, 1500);

 // Combine two bytes into a 16-bit result:

 readResult = readResultArray[0];

 readResult = readResult << 8;

 readResult = readResult | readResultArray[1];

 return readResult;

}

/**

 * @brief Reads a single register from the IS4320 memory map.

 * @param registerAdressToRead: Address in the IS4320 memory map to be read.

 * @retval Value stored at the registerAdressToRead register address.

 */

void writeIS4320Register(uint16_t registerAdressToWrite, uint16_t value) {

 uint8_t IS4320_I2C_Chip_Address; // I2C address of IS4320 chip (7-bit).

 IS4320_I2C_Chip_Address = 0x14; // IS4320 I2C address is 0x14 (7-bit).

 // STM32 HAL expects 8-bit address, so shift left by 1:

 IS4320_I2C_Chip_Address = IS4320_I2C_Chip_Address << 1;

 // The HAL library to write I2C memories needs the data to be in a uint8_t array.

 // So, lets put our uint16_t data into a 2 registers uint8_t array.

 uint8_t writeValuesArray[2];

 writeValuesArray[0] = (uint8_t) (value >> 8);

 writeValuesArray[1] = (uint8_t) value;

https://www.inacks.com/

IS4320 Modbus RTU Master

57/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

 /*

 * This is the HAL function to write to an I2C memory device. To be simple and easy to use, the IS4320 is designed to operate as an I2C

memory.

 *

 * HAL_I2C_Mem_Write parameters explained:

 * 1. &hi2c1: This is the name of the I2C that you're using. You set this in the CubeMX. Don't forget the '&'.

 * 2. IS4320_I2C_Chip_Address: The I2C address of the IS4320 (must be left-shifted).

 * 3. registerAdressToWrite: The holding register address of the IS4320 we want to write to.

 * 4. I2C_MEMADD_SIZE_16BIT: You must indicate the memory addressing size. The IS4320 memory addressing is 16-bits.

 * This keyword is an internal constant of HAL libraries. Just write it.

 * 5. writeValuesArray: An 8-bit array where we store the data to be written by the HAL function.

 * 6. 2: The number of bytes to write. Since one holding register is 16 bits, we need to write 2 bytes.

 * 7. 1500: IMPORTANT, this timeout must be higher than the timeout specified in CFG_MB_TIMEOUT.

 * 1500 is a good default value.

 */

 HAL_I2C_Mem_Write(&hi2c1, IS4320_I2C_Chip_Address, registerAdressToWrite, I2C_MEMADD_SIZE_16BIT, writeValuesArray, 2, 1500);

}

// This function is required to make printf work over the Serial port.

// It is never called directly in the code — printf internally uses it

int _write(int file, char *ptr, int len) {

 HAL_UART_Transmit(&huart2, (uint8_t*)ptr, len, HAL_MAX_DELAY);

 return len;

}

https://www.inacks.com/

IS4320 Modbus RTU Master

58/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

Main and while(1):

int main(void) {

 /* First, configure the Modbus communication parameters

 * to match the slave characteristics.

 * This only needs to be done once before communicating

 * with a Modbus device that has a different configuration. */

 // Set baud rate to 19200:

 uint16_t baudRate = 113;

 writeIS4320Register(CFG_MBBDR, baudRate);

 // Set parity to Even:

 uint16_t parityBit = 122;

 writeIS4320Register(CFG_MBPAR, parityBit);

 // Set stop bits to 1:

 uint16_t stopBits = 131;

 writeIS4320Register(CFG_MBSTP, stopBits);

 while (1) {

 /* Example: Read Holding Register 0 and print its value

 * to the PC via the Serial port */

 // Set the Modbus Slave ID:

 uint16_t modbusSlaveId = 1;

 writeIS4320Register(REQ_SLAVE, modbusSlaveId);

 // Set the Function Code. For reading Holding Registers, use FC = 3:

 uint16_t functionCode = 3;

 writeIS4320Register(REQ_FC, functionCode);

 // Set the Starting Register address. Here we want to read Holding Register 0:

 uint16_t startingRegister = 0;

 writeIS4320Register(REQ_STARTING, startingRegister);

 // Set the number of Holding Registers to read (minimum is 1):

 uint16_t quantity = 1;

 writeIS4320Register(REQ_QTY, quantity);

 // Send the Request to the Modbus Slave:

 writeIS4320Register(REQ_EXECUTE, 1);

 // Read back the result/status of the operation:

 uint16_t status = readIS4320Register(RES_STATUS);

 if (status == 2) {

 // OK! The Request was sent and a Response was received

 // Read the data:

 uint16_t holdingRegisterData = readIS4320Register(RES_DATA1);

 printf("Holding Register 0 content = %d\r\n", holdingRegisterData);

 }

 else if (status == 3) {

 // Timeout: no Response from the Modbus Slave

 printf("Timeout, the slave did not answer.\n");

 }

 else if (status == 4) {

 printf("Broadcast message sent.\n");

 }

 else if (status == 5) {

 printf("You configured wrongly the REQ_SLAVE register.\n");

 }

 else if (status == 6) {

 printf("You configured wrongly the REQ_FC register.\n");

 }

 else if (status == 7) {

 printf("You configured wrongly the REQ_QTY register.\n");

 }

 else if (status == 8) {

 printf("There was a Frame Error.\n");

 }

 else if (status == 201) {

 printf("Modbus Exception Code 1: Illegal Function.\n");

 }

 else if (status == 202) {

 printf("Modbus Exception Code 2: Illegal Data Address.\n");

https://www.inacks.com/

IS4320 Modbus RTU Master

59/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

 }

 else if (status == 203) {

 printf("Modbus Exception Code 3: Illegal Data Value.\n");

 }

 else if (status == 204) {

 printf("Modbus Exception Code 4: Server Device Failure.\n");

 }

 else {

 printf("Unkown Error");

 }

 // Add a delay to give the Modbus Slave time to respond and avoid stressing it:

 HAL_Delay(1000);

}

https://www.inacks.com/

IS4320 Modbus RTU Master

60/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

10.3. Raspberry Pi Example

Coding with Raspberry Pi for the IS4320 is very simple. It does not require any INACKS-specific library, just the

standard Python smbus2 library for I2C: i2c_msg.write(), i2c_msg.read() and related.

This Raspberry Pi example is written in Python and based on the Raspberry Pi Model B and the Kappa4320Rasp

Evaluation Board, which features the IS4320 chip. The Kappa4320Rasp has a Raspberry Pi form factor and directly

fits into the Model B, requiring no additional connections, which makes testing the example very easy.

The example demonstrates how to use the Raspberry Pi to communicate with the IS4320 over I2C. In this example,

the Raspberry Pi instructs the IS4320 to read Holding Register 0 using Function Code 3 from a Modbus Slave, and

prints the result to the console.

To test the example, you will need a Modbus Slave. You can use the pyModSlave software to create a Modbus

Slave. Configure the Slave with these values: Slave Address 1, 19200 baud, Even parity, and 1 Stop bit.

Attention: The IS4320 stretches the I2C signal while waiting for the Modbus Slave Response or its timeout. Since

clock stretching is not officially supported, your code must handle the I2C exception that occurs when the IS4320

stretches the signal. Continue reading and catching the I2C exception while the IS4320 is stretching the bus.

You can download this Python project at: https://github.com/inacks/ISXMPL4320ex4

from smbus2 import SMBus, i2c_msg

import time

I2C_BUS = 1 #

DEVICE_ADDRESS = 0x14 # 7-bit I2C address of the IS4320

IS4320 register map

CFG_MBBDR = 0

CFG_MBPAR = 1

CFG_MBSTP = 2

CFG_CHIP_ID = 4

CFG_CHIP_REV = 5

REQ_EXECUTE = 6

REQ_SLAVE = 7

REQ_FC = 8

REQ_STARTING = 9

REQ_QTY = 10

RES_STATUS = 138

RES_DATA1 = 139

def write_IS4320_register(start_register, data_word):

 """

 Write a 16-bit register to the IS4320 memory map.

 :param start_register: The 16-bit register address to start writing to.

 :param data_bytes: A list of bytes to write.

 """

 high_addr = (start_register >> 8) & 0xFF

 low_addr = start_register & 0xFF

 data_word_high = (data_word>> 8) & 0xFF

 data_word_low = data_word & 0xFF

 with SMBus(I2C_BUS) as bus:

 msg = i2c_msg.write(DEVICE_ADDRESS, [high_addr, low_addr, data_word_high,

data_word_low])

 bus.i2c_rdwr(msg)

def read_IS4320_register(start_register):

 """

 Read a 16-bit value from the IS4320 memory map.

 :param start_register: 16-bit register address to read from

 :return: 16-bit integer value read (big-endian)

 """

 high_addr = (start_register >> 8) & 0xFF # High byte of register address

 low_addr = start_register & 0xFF # Low byte of register address

 try:

 with SMBus(I2C_BUS) as bus:

 # Write register address first to set internal pointer

 write_msg = i2c_msg.write(DEVICE_ADDRESS, [high_addr, low_addr])

 # Prepare to read 2 bytes from the device

https://www.inacks.com/
https://www.inacks.com/kappa4320rasp
https://www.sourceforge.net/projects/pymodslave
https://github.com/inacks/ISXMPL4320ex4

IS4320 Modbus RTU Master

61/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

 read_msg = i2c_msg.read(DEVICE_ADDRESS, 2)

 bus.i2c_rdwr(write_msg, read_msg)

 data = list(read_msg) # Read bytes as list of ints

 # Combine high and low bytes into 16-bit integer (big-endian)

 value = (data[0] << 8) | data[1]

 return value

 except IOError as e:

 return None # return None on failure

chipID = None

chipRev = None

Detect the chip

chipID = None

chipRev = None

Detect the chip

while True:

 chipID = read_IS4320_register(CFG_CHIP_ID)

 chipRev = read_IS4320_register(CFG_CHIP_REV)

 if chipID == 20:

 print("IS4320 Chip detected on I2C!")

 print("Chip ID:", chipID)

 print("Chip Rev:", chipRev)

 break

 print("ERROR: IS4320 Chip NOT detected on I2C!")

 time.sleep(1)

First, configure the Modbus communication parameters

to match the slave characteristics.

This only needs to be done once before communicating

with a Modbus device that has a different configuration.

Set baud rate to 19200:

baudRate = 113

write_IS4320_register(CFG_MBBDR, baudRate)

Set parity to Even:

parityBit = 122

write_IS4320_register(CFG_MBPAR, parityBit)

Set stop bits to 1:

stopBits = 131

write_IS4320_register(CFG_MBSTP, stopBits)

while True:

 """Example: Read Holding Register 0 and print its value."""

 # Set the Modbus Slave ID:

 modbusSlaveId = 1

 write_IS4320_register(REQ_SLAVE, modbusSlaveId)

 # Set the Function Code. For reading Holding Registers, use FC = 3:

 functionCode = 3

 write_IS4320_register(REQ_FC, functionCode)

 # Set the Starting Register address. Here we want to read Holding Register 0:

 startingRegister = 0

 write_IS4320_register(REQ_STARTING, startingRegister)

 # Set the number of Holding Registers to read (minimum is 1):

 quantity = 1

 write_IS4320_register(REQ_QTY, quantity)

 # Send the Request to the Modbus Slave:

 write_IS4320_register(REQ_EXECUTE, 1)

 # Read back the result/status of the operation:

 status = None

 while (status == None):

 status = read_IS4320_register(RES_STATUS)

 if status == 2:

https://www.inacks.com/

IS4320 Modbus RTU Master

62/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

 # OK! The Request was sent and a Response was received

 holdingRegisterData = read_IS4320_register(RES_DATA1)

 print("Holding Register 0 content =", holdingRegisterData)

 elif status == 3:

 # Timeout: no Response from the Modbus Slave

 print("Timeout, the slave did not answer.")

 print("Did you start the pyModSlave? Did you set its configuration to: "

 "Slave Address 1, 19200 baud, Even parity, and 1 Stop bit?")

 elif status == 4:

 print("Broadcast message sent.")

 elif status == 5:

 print("You configured wrongly the REQ_SLAVE register.")

 elif status == 6:

 print("You configured wrongly the REQ_FC register.")

 elif status == 7:

 print("You configured wrongly the REQ_QTY register.")

 elif status == 8:

 print("There was a Frame Error.")

 elif status == 201:

 print("Modbus Exception Code 1: Illegal Function.")

 elif status == 202:

 print("Modbus Exception Code 2: Illegal Data Address.")

 print("If using pyModSlave, make sure the 'Start Addr' parameter is set to 0.")

 elif status == 203:

 print("Modbus Exception Code 3: Illegal Data Value.")

 elif status == 204:

 print("Modbus Exception Code 4: Server Device Failure.")

 else:

 print("Unknown Error")

 # Add a delay to give the Modbus Slave time to respond and avoid stressing it:

 time.sleep(1)

https://www.inacks.com/

IS4320 Modbus RTU Master

63/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

11. PC/Mac Tools
The following third-party software options are provided for reference only. These applications are not developed,

maintained, or endorsed by INACKS. We do not guarantee their functionality, compatibility, or compliance with the

Modbus standard. Users should evaluate and choose software based on their specific needs.

11.1. Modbus Tools

USB Isolated Modbus Device

- Title: DamnModIsoUsb

Description:
The DamnModIsoUsb is a USB to Modbus RTU interface that allows a
PC or Mac to operate as either a Modbus RTU Master or Slave. It
includes a robust USB connector and galvanic isolation to ensure safe
and reliable operation. The device is compatible with Python,
pyModSlave, QModMaster, and other software or scripts that support
serial communication.

Web:
www.inacks.com/damnmodisousb

Modbus Slave Software

Title: pyModSlave

Description:
pyModSlave is a free python-based implementation of a Modbus slave
application for simulation purposes. You can install the python module or
use the precompiled (for Windows only) stand alone GUI (Qt based) utility
(unzip and run). pyModSlave also includes a bus monitor for examining
all traffic on the bus.

Web:
https://sourceforge.net/projects/pymodslave/

Modbus Master Software

Title: QModMaster

Description:
QModMaster is a free Qt-based implementation of a Modbus master
application. A graphical user interface allows easy communication with
Modbus RTU and TCP slaves. QModMaster also includes a bus monitor
for examining all traffic on the bus.

Web:
https://sourceforge.net/projects/qmodmaster/

Important:
Go to menu Options → Settings, and set the parameter Base Addr to 0
to avoid confusions with the Modbus Registers Addresses.

https://www.inacks.com/
http://www.inacks.com/damnmodisousb
http://www.inacks.com/damnmodisousb
https://sourceforge.net/projects/pymodslave/
https://sourceforge.net/projects/qmodmaster/

IS4320 Modbus RTU Master

64/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

11.2. I2C Tools

USB I2C Master Device

- Title: DamnI2cUsb

Description:
The DamnI2cUsb is a USB to I2C-Master interface that allows a PC or
Mac to operate as an I2C Master Device, similar to a microcontroller.

Communication is handled over a serial link, making it compatible with
Python and other scripting or programming languages. The tool allows
reading from and writing to the IS4320 memory map, making it especially
useful during the debugging stage.

Web:
www.inacks.com/damni2cusb

https://www.inacks.com/
http://www.inacks.com/damni2cusb

IS4320 Modbus RTU Master

65/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

Content
IS4320: I2C Modbus RTU Master Stack 1

Product Selection Guide .. 2

1. Electrical Specifications 3

2. Detailed Description ... 4

2.1. IS4320 Description 4

2.2. Organization .. 5

2.3. IS4320 Advantages 6

2.4. Modbus UART Port 7

3. Usage ... 12

3.1. Example: Read Holding Registers 13

3.2. Example: Write Holding Registers 16

4. Pin Description ... 19

4.1. TX and RX Pins ... 19

4.2. DIR Pin .. 19

4.3. SCL and SDA Pins 20

4.4. I2CSPD Pin ... 20

5. Memory Description ... 21

5.1. Memory Map Organization 21

5.2. Memory Map Table 22

5.3. CFG_MBBDR Register 23

5.4. CFG_MBPAR Register 24

5.5. CFG_MBSTP Register 25

5.6. CFG_MB_TIMEOUT Register 26

5.7. CFG_CHIP_ID Register............................. 27

5.8. CFG_CHIP_REV Register 28

5.9. REQ_EXECUTE Register.......................... 29

5.10. REQ_SLAVE Register 30

5.11. REQ_FC Register 31

5.12. REQ_STARTING Register 32

5.13. REQ_QTY Register 33

5.14. REQ_DATAx Register 34

5.15. RES_STATUS Register 36

5.16. RES_DATAx Register 37

6. I2C Description ... 39

6.1. Highlights ... 39

6.2. Read Operations .. 40

6.2.1. Single Word Read 40

6.2.2. Multiple Word Read 41

6.3. Write Operations .. 42

6.3.1. Single Word Write................................ 42

6.3.2. Multiple Word Write 43

7. Mechanical ... 44

8. Hardware Examples ... 46

8.1. RS485 Example ... 46

8.2. Isolated RS485 Example 48

8.3. RS232 Example ... 49

8.4. Bus Topology ... 50

8.5. Cable Wiring .. 51

9. Firmware Examples .. 52

9.1. Arduino Example .. 52

9.2. STM32 Example .. 55

9.3. Raspberry Pi Example 60

10. PC/Mac Tools ... 63

10.1. Modbus Tools .. 63

10.2. I2C Tools .. 64

Content ... 65

Appendix .. 66

Revision History .. 66

Documentation Feedback 66

Sales Contact .. 66

Customization ... 66

Trademarks ... 66

Disclaimer ... 67

https://www.inacks.com/

IS4320 Modbus RTU Master

66/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

Appendix

Revision History

Date Revision Code Description

September 2025 ISDOC141A - Initial Release

Documentation Feedback

Feedback and error reporting on this document are very much appreciated. Please indicate the code or title of the

document.

Sales Contact

For special order requirements, large volume orders, or scheduled orders, please contact our sales department at:

Customization

INACKS can develop new products or customize existing ones to meet specific client needs. Please contact our

engineering department at:

Trademarks

This company and its products are developed independently and are not affiliated with, endorsed by, or associated

with any official protocol or standardization entity. All trademarks, names, and references to specific protocols

remain the property of their respective owners.

https://www.inacks.com/

IS4320 Modbus RTU Master

67/67 ISDOC141A, Revised September 2025
 Submit Feedback – www.inacks.com

Disclaimer
Limited warranty and liability — Information in this document is

believed to be accurate and reliable. However, INACKS does not

give any representations or warranties, expressed or implied, as to

the accuracy or completeness of such information and shall have no

liability for the consequences of use of such information. INACKS

takes no responsibility for the content in this document if provided

by an information source outside of INACKS.

In no event shall INACKS be liable for any indirect, incidental,

punitive, special or consequential damages (including - without

limitation - lost profits, lost savings, business interruption, costs

related to the removal or replacement of any products or rework

charges) whether or not such damages are based on tort (including

negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any

reason whatsoever, INACKS’s aggregate and cumulative liability

towards customer for the products described herein shall be limited

in accordance with the Terms and conditions of commercial sale of

INACKS.

Right to make changes — INACKS reserves the right to make

changes to information published in this document, including without

limitation specifications and product descriptions, at any time and

without notice. This document supersedes and replaces all

information supplied prior to the publication hereof.

Suitability for use — INACKS products are not designed, authorized

or warranted to be suitable for use in life support, life-critical or

safety-critical systems or equipment, nor in applications where

failure or malfunction of an INACKS product can reasonably be

expected to result in personal injury, death or severe property or

environmental damage. INACKS and its suppliers accept no liability

for inclusion and/or use of INACKS products in such equipment or

applications and therefore such inclusion and/or use is at the

customer’s own risk.

Quick reference data — The Quick reference data is an extract of

the product data given in the Limiting values and Characteristics

sections of this document, and as such is not complete, exhaustive

or legally binding.

Applications — Applications that are described herein for any of

these products are for illustrative purposes only. INACKS makes no

representation or warranty that such applications will be suitable for

the specified use without further testing or modification.

Customers are responsible for the design and operation of their

applications and products using INACKS products, and INACKS

accepts no liability for any assistance with applications or customer

product design. It is customer’s sole responsibility to determine

whether the INACKS product is suitable and fit for the customer’s

applications and products planned, as well as for the planned

application and use of customer’s third party customer(s).

Customers should provide appropriate design and operating

safeguards to minimize the risks associated with their applications

and products.

INACKS does not accept any liability related to any default, damage,

costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by

customer’s third party customer(s). Customer is responsible for

doing all necessary testing for the customer’s applications and

products using INACKS products in order to avoid a default of the

applications and the products or of the application or use by

customer’s third party customer(s). INACKS does not accept any

liability in this respect.

Limiting values — Stress above one or more limiting values (as

defined in the Absolute Maximum Ratings System of IEC 60134) will

cause permanent damage to the device. Limiting values are stress

ratings only and (proper) operation of the device at these or any

other conditions above those given in the Recommended operating

conditions section (if present) or the Characteristics sections of this

document is not warranted. Constant or repeated exposure to

limiting values will permanently and irreversibly affect the quality

and reliability of the device.

Terms and conditions of commercial sale — INACKS products are

sold subject to the general terms and conditions of commercial sale,

as published at http://www.inacks.com/comercialsaleterms, unless

otherwise agreed in a valid written individual agreement. In case an

individual agreement is concluded only the terms and conditions of

the respective agreement shall apply. INACKS hereby expressly

objects to applying the customer’s general terms and conditions with

regard to the purchase of INACKS products by customer.

No offer to sell or license — Nothing in this document may be

interpreted or construed as an offer to sell products that is open for

acceptance or the grant, conveyance or implication of any license

under any copyrights, patents or other industrial or intellectual

property rights.

Export control — This document as well as the item(s) described

herein may be subject to export control regulations. Export might

require a prior authorization from competent authorities.

Non-automotive qualified products — This INACKS product is not

suitable for automotive use. It is neither qualified nor tested in

accordance with automotive testing or application requirements.

INACKS accepts no liability for inclusion and/or use of non-

automotive qualified products in automotive equipment or

applications.

Protocol Guidance Disclaimer: The information provided herein

regarding the protocol is intended for guidance purposes only. While

INACKS strive to provide accurate and up-to-date information, this

content should not be considered a substitute for official protocol

documentation. It is the responsibility of the client to consult and

adhere to the official protocol documentation when designing or

implementing systems based on this protocol.

INACKS make no representations or warranties, either expressed

or implied, as to the accuracy, completeness, or reliability of the

information contained in this document. INACKS shall not be held

liable for any errors, omissions, or inaccuracies in the information or

for any user’s reliance on the information.

The client is solely responsible for verifying the suitability and

compliance of the provided information with the official protocol

standards and for ensuring that their implementation or usage of the

protocol meets all required specifications and regulations. Any

reliance on the information provided is strictly at the user’s own risk.

Certification and Compliance Disclaimer: Please be advised that the

product described herein has not been certified by any competent

authority or organization responsible for protocol standards.

INACKS do not guarantee that the chip meets any specific protocol

compliance or certification standards.

It is the responsibility of the client to ensure that the final product

incorporating this product is tested and certified according to the

relevant protocol standards before use or commercialization. The

certification process may result in the product passing or failing to

meet these standards, and the outcome of such certification tests is

beyond our control.

INACKS disclaim any liability for non-compliance with protocol

standards and certification failures. The client acknowledges and

agrees that they bear sole responsibility for any legal, compliance,

or technical issues that arise due to the use of this product in their

products, including but not limited to the acquisition of necessary

protocol certifications.

https://www.inacks.com/

	IS4320: I2C Modbus RTU Master Stack
	Product Selection Guide
	1. Electrical Specifications
	2. Detailed Description
	2.1. IS4320 Description
	2.2. Organization
	2.3. IS4320 Advantages
	2.4. Modbus UART Port

	3. Refer to chapter Mechanical
	4. Usage
	4.1. Example: Read Holding Registers
	4.2. Example: Write Holding Registers

	5. Pin Description
	5.1. TX and RX Pins
	5.2. DIR Pin
	5.3. SCL and SDA Pins
	5.4. I2CSPD Pin

	6. Memory Description
	6.1. Memory Map Organization
	6.2. Memory Map Table
	6.3. CFG_MBBDR Register
	6.4. CFG_MBPAR Register
	6.5. CFG_MBSTP Register
	6.6. CFG_MB_TIMEOUT Register
	6.7. CFG_CHIP_ID Register
	6.8. CFG_CHIP_REV Register
	6.9. REQ_EXECUTE Register
	6.10. REQ_SLAVE Register
	6.11. REQ_FC Register
	6.12. REQ_STARTING Register
	6.13. REQ_QTY Register
	6.14. REQ_DATAx Register
	6.15. RES_STATUS Register
	6.16. RES_DATAx Register

	7. I2C Description
	7.1. Highlights
	7.2. Read Operations
	7.2.1. Single Word Read
	7.2.2. Multiple Word Read

	7.3. Write Operations
	7.3.1. Single Word Write
	7.3.2. Multiple Word Write

	8. Mechanical
	9. Hardware Examples
	9.1. RS485 Example
	9.2. Isolated RS485 Example
	9.3. RS232 Example
	9.4. Bus Topology
	9.5. Cable Wiring

	10. Firmware Examples
	10.1. Arduino Example
	10.2. STM32 Example
	10.3. Raspberry Pi Example

	11. PC/Mac Tools
	11.1. Modbus Tools
	11.2. I2C Tools

	Content
	Appendix
	Revision History
	Documentation Feedback
	Sales Contact
	Customization
	Trademarks
	Disclaimer

