
IS3715 I2C DMX Controller

IS3715: I2C DMX512 Controller
Full Universe, 512 Channels

Applications
• Custom Lighting Controllers
• Automated Light Controllers
• Digital Art Installations
• Architectural & Building Lighting
• Stage & Entertainment Lighting
• Animatronics
• Water fountains
• OEM / Device Manufacturers
• Museum Lighting

Main Advantages
• Reduces engineering time and costs
• Reduces product time-to-market
• Makes the DMX protocol transparent to both the

microcontroller and the engineer
• Provides a low-cost solution
• Fewer ISRs, lower microcontroller CPU load
• Reduces microcontroller memory usage
• Saves microcontroller dedicated pins with I2C
• Minimizes impact on microcontroller peripherals (no

need for dedicated timers, UARTs, etc.)
• Compact, easy-to-solder SO8N package
• I2C speeds: 100 kHz, 400 kHz, and 1 MHz

DMX Characteristics
• DMX512-A Protocol Compliant
• Sends All 512 Channels
• Synchronization Output Pin
• Update rate: 44 Hz

General Description
The IS3715 is an I2C DMX Controller chip. You write
values to its internal memory map via I2C and it
continuously outputs them as DMX data at 44 Hz.

The chip features 512 8-bit RAM registers to store DMX
channel values, which can be written to like a typical I2C
EEPROM. It continuously outputs all memory as DMX
data, so you only need to write via I2C when values
change, keeping your microcontroller relaxed.

The I2C-Serial interface operates as a slave and
supports 100 kHz, 400 kHz, and 1 MHz communication
speeds.

The IS3715 frees your microcontroller from the DMX
protocol timing constraints, memory requirements, and
ISR load associated with generating DMX data, reducing
the need for timers, flash, and RAM. It also eliminates
the need for dedicated pins by operating over a shared
I2C.

The device operates at 3.3 V, with 5 V-tolerant I2C,
enabling compatibility with 3.3 V or 5 V microcontrollers.
It is offered in Industrial (–40 °C to +85 °C) and Extended
(–40 °C to +125 °C) temperature ranges.

Part Number Package Op. Temperature

IS3715-S8-I SO8N -40ºC to +85ºC

IS3715-S8-E SO8N -40ºC to +125ºC

1 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/
https://inacks.com/contact/

IS3715 I2C DMX Controller

 1 Electrical Specification

Absolute Maximum Ratings

Parameter Min Max Unit

Input Voltage

VDD Pin -0.3 4

VSCL, SDA, TX, and SYNC Pins -0.3 5.5

I2CSPD Pin -0.3 4

Current Sourced/Sunk by any I/O or Control Pin ±20 mA

Temperature
Operating Temperature

IS3715-S8-I -40 +85

ºCIS3715-S8-E -40 +125

Storage Temperature -65 +150

Electrostatic Discharge
(TA = 25ºC)

Human-body model (HBM), Class 1C -2000 +1500
V

Charged-device model (CDM), Class C2a -500 +500

Exceeding the specifications outlined in the Absolute Maximum Ratings could potentially lead to irreversible harm to the
device. It's important to note that these ratings solely indicate stress limits and don't guarantee the device's functionality
under such conditions, or any others not specified in the Recommended Operating Conditions. Prolonged exposure to
conditions at or beyond the absolute maximum ratings might compromise the reliability of the device.

Recommended Operation Conditions

Parameter Symbol Min Nom Max Unit

Supply Voltage VDD 2.0 3.3 3.6

VInput Voltage at SCL, SDA. TX and SYNC Pins VI/O-IN -0.3 3.3 5.5

Input Voltage at I2CSPD Pin VI2CSPD-IN -0.3 1.8, 3.3 3.6

Source/Sink Current at SCL, SDA, TX and SYNC Pins II/O-SS - - ±6 mA

Electrical Characteristics

Parameter Symbol Min Nom Max Unit

Current Consumption (TA = 25ºC) IOP - 3.40 3.90 mA

Input Voltage
Logical High-Level VIH 0.7xVDD - -

V
Logical Low-Level VIL - - 0.3xVDD

Electrical Specifications Revision A

2 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/
https://inacks.com/contact/

IS3715 I2C DMX Controller

 2 Detailed Description

 2.1 IS3715 Description
The IS3715 is a DMX512 protocol-specialized integrated
circuit that generates DMX data from the contents of its
memory map, which are updated via I2C from your
microcontroller.

The DMX data can control any DMX-compatible device,
usually including:

• Spotlights and moving heads
• LED strips, panels, and bars
• Stage lights
• Floodlights, wall washers, and PAR cans
• Lasers
• Fog, haze, smoke machines
• Water fountains
• Building facades, bridges, monuments
• Relays, and motorized devices, etc.

The DMX512 standard states that this protocol should
never be used to control pyrotechnics or stage robotics,
as it has no intrinsic error checking. Therefore, this chip
should not be used for those applications either.

The chip connects to your microcontroller via I2C, where
it acts as an I2C slave at the address 21 (0x15). To set a
DMX channel, the microcontroller writes the
corresponding memory address. For example, writing to
register address 1 sets the value of DMX Channel 1,
writing to register address 512 sets the value of DMX
Channel 512, and so on for the full range of channels
from 1 to 512.

To set the I2C speed, connect the I2CSPD pin to GND
for 100 kHz, to 1.65 V for 400 kHz (using a simple
resistor voltage divider: 1.65 = 3.3 V ÷ 2), or to 3.3 V for
1 MHz. The SDA and SCL pins operate at 3.3 V logic
levels and are 5 V tolerant.

The IS3715 continuously generates DMX data from its
memory map without interruption. This has the
advantage that if a cable picks up noise or a connector
makes a poor contact, a glitch may appear on the lights,
but it will be instantly cleared thanks to the IS3715 keeps
updating the data continuosly. The update frequency is
44 Hz.

The DMX data is output on the TX pin at TTL voltage
levels, while the DMX network requires RS485 voltage
levels. Therefore, you must connect an RS485 driver or
transceiver, such as the THVD1500, to this pin to
convert TTL to RS485. You can find more details about
the design in the Hardware Examples section.

The IS3715 features an an output synchronization pin
which can be used to synchronize multiple DMX
universes. It goes high for 100 µs at the beginning of the
DMX Break signal. The use of this pin is optional and is
not part of the DMX512 standard.

The IS3715 operates at 3.3 V. Bypass its VDD pin to
GND with a 100nF ceramic capacitor.

3 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/
https://inacks.com/contact/

IS3715 I2C DMX Controller

 2.2 Usage
To use the chip, your microcontroller must write DMX
values to the IS3715 via I2C in to control DMX fixtures
such as lights. For proper operation, first ensure that
both hardware and firmware are correctly configured by
following the validation steps. Once validated, you can
begin controlling DMX from your firmware.

Hardware Validation
To ensure proper operation via I²C, verify the following
hardware conditions:

1. The VDD pin is supplied with 3.3 V.

2. The SCL and SDA pins have pull-ups to 3.3 V
or 5 V.

3. For an I²C speed of 100 kHz, the I2CSPD pin
must be connected to VSS.

4. The TX pin is connected to an RS-485 driver or
transceiver.

5. For a non-isolated controller design, ensure
that your microcontroller, the IS3715, the
transceiver, and pin 1 of the DMX connector
(signal common) share the same ground.

If these conditions are met, you can safely begin using
the chip through the I2C Serial interface.

Refer to chapter Hardware Examples for more
information about hardware design.

Firmware Validation
Before setting values to the DMX channels, it is good
practice to first validate that your microcontroller can
properly communicate via I2C.

The simplest way to do this is to scan the
I2C-Serial interface and confirm that the IS3715 is
detected.

Once detected, you can be confident that the
I2C-Serial interface is working correctly, and that any
remaining issues will come from your firmware code.

At this point, you can implement your I2C write routine.
Remember that the IS3715 uses 16-bit register
addressing with 8-bit data size. To verify correct
addressing, read the CHIP_ID register at address 513.
This register is read-only and always returns the fixed
value 21 (0x15). If you obtain this value,
communication is validated and you can safely begin
sending DMX data via I²C to control the DMX devices.

1. Scan the I2C-Serial interface to confirm
detection of the IS3715.

2. Read the CHIP_ID register (address 513) and
verify that it returns the fixed value 21.

Refer to application note ISAN0001-How to scan I2C
Serial Interface for instructions on scanning the I2C-
Serial interface.

Refer to chapter Firmware Examples chapter
for example codes.

4 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/
https://inacks.com/contact/

IS3715 I2C DMX Controller

 2.3 I2C Timing vs DMX Timing
The IS3715 always updates all 512 DMX channels on its
TX pin every 22.9278 ms, corresponding to 43.61 Hz.
This rate is constant and does not change under any
circumstance. Even if no new data is received via I2C,
the TX pin continues refreshing at 43.61 Hz. Continuous
refreshing helps clear glitches or artifacts that may
appear on DMX receivers due to poor cable
connections, electrical noise, or other issues affecting
the RS-485 bus.

The time required to write DMX data via I2C depends on
the number of channels being written, the I²C speed, and
the microcontroller’s processing time to configure and
send the data.

Writing via I2C all the 512 DMX channels at 1 MHz takes
~4.635 ms, while the TX pin outputs a full DMX frame in

22.9278 ms. That allows the microcontroller to update
the entire DMX universe at truly 43.61 Hz.

Writing via I2C all the 512 DMX channels at 400 kHz
takes ~11.587 ms, compared to 22.9278 ms for the TX
pin to output a full DMX frame. In this case, writing all
DMX channels via I2C takes slightly more than than one
TX frame.

Similar happens when writing all the 512 DMX channels
via I2C at 100 kHz, which takes ~46.35 ms, while
outputting a whole DMX frame via TX pin takes 22.9278
ms. In this case the IS3715 will need 3 frames to fully
update all 512 DMX channels.

5 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/
https://inacks.com/contact/

IS3715 I2C DMX Controller

 3 Pin Description

Pin Name Type Description

1 SDA Open Drain
5V Tolerant

I2C Data pin. Open drain, it requires pull-up.

2 VDD Supply 3.3V power supply pin.
Bypass this pin to GND with a 100nF ceramic capacitor.

3 VSS Ground Ground reference pin.

4 TX Digital Output
Push-Pull

DMX UART Transmit Pin in TTL voltage levels.

Attention:
Use an RS485 transmitter or transceiver to adapt the TTL voltage levels to DMX voltage levels.

5 DNC Do Not Connect Leave this pin unconnected.

6 SYNC Digital Output
Push-Pull

DMX Synchronization Pin.

7 I2CSPD Analog Input
0 to 3.3V

I2C-Serial Interface Speed Selection pin.
• For 100kHz pull to GND.
• For 400kHz make a voltage divider of VDD/2 (1.65V).
• For 1MHz pull to VDD (3.3V).

8 SCL Open Drain
5V Tolerant

I2C Clock pin. Open drain, it requires pull-up.

 3.1 TX Pin
DMX UART Transmit Pin.

This pin transmits DMX512 data to the RS485
transmitter or transceiver. It operates at 3.3V TTL levels.

Use an RS485 transmitter or transceiver, such as the
THVD1400DR, to convert TTL voltage levels to DMX
(RS485) differential signals. Refer to the Hardware
Examples section for more details.

Important: Connecting this pin directly to DMX bus
without the transmitter or transceiver will permanently
damage the device.

 3.2 SYNC Pin
DMX Synchronization Pin.

This pin can be used to synchronize multiple DMX
universes. It goes high for 100 µs at the beginning of the
Break signal.

The use of this pin is optional and is not part of the
DMX512 standard.

6 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/
https://inacks.com/contact/

IS3715 I2C DMX Controller

 3.3 SCL and SDA Pins
I2C-Compatible Bus Interface Pins.

SCL (Serial Clock Line): This pin is used to synchronize
data transfer between the IS3715 device and the
microcontroller or other CPU.

SDA (Serial Data Line): This bidirectional pin is used for
both sending and receiving data between the IS3715
and the microcontroller or other CPU.

Both pins are open-drain and must be pulled up to 3.3 V
or 5 V. The pull-up resistor value should be chosen
based on the bus speed and capacitance. Typical values
are 4.7 kΩ for Standard Mode (100 kbps) and 2 kΩ for
Fast Mode (400 kbps) at both 3.3 V and 5 V.

 3.4 I2CSPD Pin
I2C-Serial Interface Speed Selection Pin.

This pin configures the IS3715 internal I2C-Serial
Interface timings and filters to properly work with the
selected bus speed.

For a 100 kHz setting, set the I2CSPD pin to VSS.

For a 400 kHz setting, set the I2CSPD to 1.65 V (VDD/2)
using a balanced voltage divider. This can be achieved
by placing two 4.7 kΩ resistors from the I2CSPD pin:
one to VDD and the other to VSS.

For a 1000 MHz setting, set the I2CSPD pin to 3.3 V.

Important Remarks:

Voltages above 4 V on this can permanently damage the
device.

A mismatch between the configured I2C speed and the
actual operating I2C speed (e.g., setting I2CSPD to
GND for 100 kHz but operating at 1 MHz) can lead to an
inconsistent state where some I2C messages are
processed while others are not.

Ensure a proper match between the actual operating
speed and the configured speed at the I2CSPD pin: If
your bus works at 100 kHz, ensure the I2CSPD pin is
tied to VSS. If it works at 400 kHz ensure the pin is at
1.65 V. If it works at 1 MHz, ensure the pin is at 3.3 V.

7 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/
https://inacks.com/contact/

IS3715 I2C DMX Controller

 4 Memory Map Description
The IS3715 is internally organized as a single page
containing 515 registers of 8 bits each, with addresses
ranging from 0 to 514. Therefore, accessing any register
requires a 2-byte addressing.

The memory type is RAM, which means you can read of
write any register without page-block limitations.

There are two types of registers: the DMX channel
registers (DMX_CHx) and the chip information registers.

The DMX channel registers are mapped in the memory
map so that each register number corresponds its DMX
channel number, making it easy for engineers to
understand and address the memory. For example, DMX
Channel 15 data is stored into the register 15.

The two chip information registers contain the CHIP_ID,
which is fixed throughout the product's lifetime, and the
CHIP_REV, which changes if the chip undergoes any
revision. The CHIP_ID can be used for chip detection in
the I2C-Serial Interface during firmware development

8 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/
https://inacks.com/contact/

IS3715 I2C DMX Controller

 4.1 DMX_Chx Registers
The DMX_CHx registers contain the values that will be
sent to the corresponding DMX channels. Each register
number matches the DMX channel number. For
example, writing to DMX_CH43 register will update the
data of DMX Channel 43.

There are 512 DMX_CHx registers (DMX_CH1 to
DMX_CH512), stored in volatile RAM. If the chip loses

power, these registers reset to 0 on power-up until new
data is written via I2C. You can access the registers
individually or in blocks of any size. You can even update
all DMX registers in a single I2C Multiple Byte Write
operation.

These registers are R/W registers.

Name: DMX_CHx

Description: DMX Channel Values
Address Range: 1 to 512 (0x001 to 0x200)

Memory Type: Volatile RAM
Allowed Values: 0 to 255 (0x00 to 0xFF)

Reset Values: 0 (0x00)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DMX_CHx

9 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/
https://inacks.com/contact/

IS3715 I2C DMX Controller

 4.2 CHIP_ID Registers
The CHIP_ID register contains the chip identifier, which
is a fixed value of 21 (0x15). This value is used for
production tracking. It is stored in ROM and will not
change throughout the product's life-cycle.

Since this register value is constant, reading it during
firmware development can help verify that I2C
communications are working and that the chip’s memory
can be properly read.

This register is read-only..

Name: CHIP_ID

Description: DMX Channel Values
Address: 513 (0x201)

Memory Type: ROM
Value: 21 (0x15)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 1 0 1 0 1

10 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/
https://inacks.com/contact/

IS3715 I2C DMX Controller

 4.3 CHIP_REV Registers
The CHIP_REV register indicates the chip revision.

This value is intended for production and product
tracking. It is stored in ROM and may change throughout
the product's life-cycle.

This register is read-only.

Name: CHIP_REV

Description: Chip Revision Number
Address: 514 (0x202)

Memory Type: ROM
Value: (Depends on the revision)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

- - - - - - - -

11 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/
https://inacks.com/contact/

IS3715 I2C DMX Controller

 5 I2C Description
The IS3715 operates as a Slave in the I2C-Serial
Interface. It supports Standard Mode (100 kHz), Fast
Mode (400 kHz), and Fast Mode Plus (1 MHz). The
I2C-Master device, typically a microcontroller or a
microprocessor, initiates and manages all read
operations to the Slave.

The IS3715 is represented on the bus by the I2C device
address: 21 (0x15).

Pull-up resistors are required on the SCL and SDA lines
for proper operation. The resistor values depend on the
bus capacitance and operating speed. Typical values are
4.7 kΩ for Standard Mode (100 kHz) and 2 kΩ for Fast
Mode and Fast Mode Plus (400 kHz and 1 MHz).

The IS3715's I2C pins high state can be either 3.3 V or
5 V. A logical '0' is transmitted by pulling the line low,
while a logical '1' is transmitted by releasing the line,
allowing it to be pulled high by the pull-up resistor. The
Master controls the Serial Clock (SCL) line, which
generates the synchronous clock used by the Serial
Data (SDA) line to transmit data.

A Start or Stop condition occurs when the SDA line
changes during the High period of the SCL line. Data on
the SDA line must be 8 bits long and is transmitted Most
Significant Bit First and Most Significant Byte First. After
the 8 data bits, the receiver must respond with either an
acknowledge (ACK) or a no-acknowledge (NACK) bit
during the ninth clock cycle, which is generated by the
Master. To keep the bus in an idle state, both the SCL
and SDA lines must be released to the High state.

The memory map consists of 515 registers, each 8 bits
wide. Addressing a register requires a 2-byte pointer
(DMX Pointer Register).

The operability of the Read and Write commands of the
IS3715 is very similar to an EEPROM memory. Thinking
of the IS3715 as an EEPROM memory is a good
analogy to quickly understand how to communicate with
the device.

 5.1 Highlights
I2C Device Address: 21 (0x15)

I2C Memory Map Addressing Size: 16-bit (2x 8-bit)

I2C Memory Map Register Size: 8-bit

Compatible I2C Speeds:
 - Standard Mode (100 kHz), recommended SCL and SDA pull-up value: 4.7 kΩ
 - Fast Mode (400 kHz), recommended SCL and SDA pull-up value: 2 kΩ
 - Fast Mode (10 MHz), recommended SCL and SDA pull-up value: 2 kΩ

Supported Operations:
 - Single-Byte Write
 - Multiple-Byte Write (up to 515 registers)
 - Single-Byte Read
 - Multiple-Byte Read (up to 515 registers)

Overreading and Overwriting the memory:
 - If a write operation starts at a valid memory address (0 to 514) and continues past the last valid address,
it will roll over to address 0.
 - Starting a write operation to an invalid memory address (greater than 514) will result in a NACK and data
will be discarded.
 - If a read operation starts at a valid memory address (0 to 514) and continues past the last valid address,
it will roll over to address 0.
 - Starting a read operation at an invalid memory address (greater than 514) will return a value of 0xFF.

12 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/
https://inacks.com/contact/

IS3715 I2C DMX Controller

 5.2 Single Byte Write
Writing a single byte is an action performed by the
microcontroller (I2C-Master) to write data to any
register within the IS3715 memory (I2C-Slave),
regardless of the last read or written position. To
perform this action, the microcontroller must load
the register address intended to be written into the
IS3715’s Pointer Register. Once the address is
set, the Microcontroller can send the data to be
written.

To initiate the Single Byte Write operation, the
following steps must be performed from the
beginning: The microcontroller begins by pulling

down the SDA line while the SCL line is high,
creating a Start Condition. It then sends the
IS3715 I2C device address 21 (0x15) with the
R/W bit set to 0 (indicating a write operation). Note
that the IS3715’s I2C address is fixed and does
not change, allowing it to be uniquely identified
among other devices on the I2C-Serial Interface.

Upon receiving the device address, the IS3715
acknowledges it. Subsequently, the
microcontroller sends the two bytes of the register
address it intends to write: the most significant

byte first, followed by the least significant byte,
each acknowledged by the IS3715.

The microcontroller then sends the byte to be
written, which the IS3715 acknowledges. Finally,
the microcontroller issues a Stop Condition by
raising the SDA line while the SCL line is high.

Invalid Memory Addressing
The valid memory range of the IS3715 for a write
operation goes from addresses 0 to 514. If a Write
Operation is performed with a Pointer Register
higher than 514, the IS3715 will answer with
a NACK.

13 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
http://www.inacks.com/

IS3715 I2C DMX Controller

 5.3 Multiple Byte Write
The Multiple Byte Write operation functions
similarly to the Single Byte Write, but allows
writing a block of up to 515 registers in a single
operation—that is, the entire memory in one go.

To perform a Multiple Byte Write operation, follow
the same procedure as for a Single Byte Write
until the first data byte is written. After writing the
first byte, instead of generating a Stop Condition,
the microcontroller should continue writing data

bytes. To conclude the write operation, after
sending the last data byte, the microcontroller
should generate a Stop Condition.

Invalid Memory Addressing
The valid memory range of the IS3715 for a write
operation goes from addresses 0 to 514.

If a Multiple Byte Write Operation is performed
with a Pointer Register within the valid memory

range (0 to 514) but exceeds the last memory
register (514), a rollover to register 0 will occur.

If a Multiple Byte Write Operation is performed
with a Pointer Register outside from the valid
memory range (greater than 514), the IS3715 will
respond with a NACK upon receiving the first data
byte.

14 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
http://www.inacks.com/

IS3715 I2C DMX Controller

 5.4 Single Byte Read
Reading a single byte is an action performed by
the microcontroller (I2C-Master) to access any
register within the IS3715 memory (I2C-Slave),
regardless of the last read position. To perform
this action, the microcontroller must load the DMX
channel into the IS3715's DMX Pointer Register.
Once the address is set, the microcontroller can
retrieve the DMX data from the specified register.

To initiate the Single Byte Read operation, the
following steps must be performed from the
beginning: The microcontroller starts by pulling
SDA low while SCL is high to generate a Start
Condition. It then sends the IS3715 I2C device

slave address 21 (0x15) with the R/W bit set to 0
(write). Upon receiving the device address, the
IS3715 acknowledges it. Subsequently, the
microcontroller sends the two bytes of the DMX
Pointer Register address: the most significant byte
first, followed by the less significant byte, each
acknowledged by the IS3715. This sets the
address of the next DMX channel to be read in the
DMX Pointer Register.

Next, the content of the DMX Pointer Register
needs to be read.

The microcontroller generates a Repeated Start
Condition, followed by the IS3715 I2C device

address 21 (0x15) with the R/W bit set to 1 (read),
instructing the IS3715 to retrieve data. The IS3715
acknowledges and responds with the DMX data,
which the microcontroller does not acknowledge
(NACK). Finally, the microcontroller issues a Stop
Condition by raising the SDA line while the SCL is
high.

Invalid Memory Addressing
The valid memory range of the IS3715 goes from
addresses 0 to 514. If a Read Operation is
performed with a Pointer Register higher than
514, the read result will be 0xFF.

15 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
http://www.inacks.com/

IS3715 I2C DMX Controller

 5.5 Multiple Byte Read
Multiple Byte Read operation functions similarly to
Single Byte Read but can read a block of up to
515 registers in a single operation, corresponding
to the full memory map.

To perform a Multiple Byte Read operation, follow
the same procedure as for a Single Byte Read
until the first byte is received. After receiving the
first byte, instead of generating a Not
Acknowledge (NACK), the microcontroller should
continue acknowledging (ACK) each received data

byte from the IS3715 for as many bytes as it
intends to read. To conclude the read operation,
after reading the last data byte, the microcontroller
should generate a Not Acknowledge (NACK) and
a Stop Condition.

With each byte read, the DMX Pointer Register
increments by one.

Invalid Memory Addressing
The valid memory range of the IS3715 goes from
addresses 0 to 514.

 If the Read Operation is performed with a Pointer
Register within the valid memory range (0 to 514),
but the data retrieval extends beyond register
514, a rollover to position 0 will occur. For
example, the value of register 516 will correspond
to the content of register 1 (DMX_CH1).

If a Read Operation is performed with a Pointer
Register value higher than 514, the read result will
be 0xFF.

16 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
http://www.inacks.com/

IS3715 I2C DMX Controller

 6 Hardware Examples
The following chapter represents an application design example for explanation proposals and is not part of the product
standard. The customer must design his own solution, choose its most appropriate components and validate the final
product according to the legislation and the DMX512 specifications.

 6.1 DMX Controller
This example shows the design of a standard non-isolated DMX Controller.

Block A: Your Application

This is usually the main part of your product, where you
read sensors, potentiometers, or acquire data that needs
to be converted to DMX.

Typically, a microcontroller interfaces with the IS3715,
but a microprocessor or a single-board computer, such
as a Raspberry Pi, can also be used as long as they are
equipped with an I2C-Serial Interface.

Block B: I2C-Serial Interface

For proper operation of the I2C-Serial Interface, pull-up
resistors to 3.3 V or 5 V are necessary. Typical resistor
values are 4.7 kΩ for Standard Mode (100 kHz) and 2
kΩ for both Fast Mode (400 kHz) and Fast Mode Plus
(1 MHz).

Block C: IS3715

The IS3715 is very simple to integrate into your design.

A decoupling capacitor should be placed on the power
pins (VDD and VSS). It is recommended to use a 100 nF
ceramic capacitor.

The I2CSPD pin defines the I2C speed. Connect this pin
to GND for a speed of 100 kHz. For 400 kHz, it should
be pulled to 1.65 V, which is half of 3.3 V. This can be
achieved with a simple resistor voltage divider using 3.3
V and GND. For 1 MHz, the pin must be connected to
3.3 V. This pin is not 5 V tolerant.

Block D: Transceiver

DMX operates over the RS485 electrical standard.
Therefore, an RS485 transceiver or driver is required to

convert the TTL-compatible voltage levels to differential
RS485 signals before sending them to the DMX bus.

Since a DMX controller never receives data, the DE and
RE pins of the transceiver can be tied to VCC to keep it
always in transmit mode.

Even if the transceiver is only used as a driver and
therefore the receiver part will never be used, it is
sometimes preferred because it can be cheaper than a
receiver-only device. Compare distributor prices to
validate your preferred option.

Either 3.3 V or 5 V transceivers and drivers can be used,
but 5 V ones are preferred, as they offer better noise
immunity on the DMX bus.

Isolation
Isolation is a complex topic, especially in long cable
runs, where ground potentials can differ significantly, or
when all the equipment is not powered from the same
source, e.g., mixing mains line and a gasoline generator.

This example is a Ground Referenced Transmitter
(non-isolated), which is the recommended by the
DMX512-A standard.

For a non-isolated transmitter, the standard does not
require product labeling. For an isolated transmitter, the
standard requires it to be labeled as either “ISO” or
“ISOLATED”.

Block E: Terminator and Protection

Terminator
Reflections on a transmission line occur whenever
there’s an impedance mismatch that a traveling wave
encounters as it moves along the line. To reduce
reflections at the ends of a DMX cable, a line termination

17 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
http://www.inacks.com/

IS3715 I2C DMX Controller

should be placed near each end of the bus. Terminating
both ends is crucial because signals travel in both
directions, but no more than two terminators should be
used on the same bus. The line terminator connects
across the balanced lines (cable A and B) and is a 120 Ω
resistor rated at 1 W.

On the controller, which normally only has a DMX Out
connector, the terminator resistor is usually integrated on
the PCB. On the receivers, it is not integrated, as they
have a DMX Out connector to daisy-chain another
receiver. Therefore, on the receivers, you terminate the
line by placing a special terminator connector, which
contains nothing but a 120 Ω resistor.

Protection
The protection stage is influenced by several factors,
including the intrinsic robustness and protection features
of the transceiver or driver chip, the product's budget,
and its required reliability, among other considerations.
Refer to your transceiver's documentation to determine
the appropriate protection requirements.

In the schematic, a bidirectional 400-W transient
suppressor diodes (CDSOT23-SM712) are used to
protect against surge transients.

Block F: Connector and Cable

Connector
The official DMX connector is the XLR-5. Exceptions
include RJ45, miniature connectors, and screw terminal
connectors. However, despite its popularity and
widespread use, XLR-3 is not part of the DMX standard
and should not be used. But what happens in the real
world and in this example?

Generally, XLR-3 connectors are cheaper than XLR-5
connectors. Therefore, XLR-5 connectors are typically
found in professional equipment, while XLR-3
connectors are more common in cost-sensitive devices.

In this example, an XLR-3 connector has been used due
to its widespread popularity and clarity of
implementation, but we strongly encourage product
designers to follow the standard and use XLR-5
connectors.

Using an XLR-3 connector has the drawback of making
your product compatible with standard microphone
cables, which are specifically designed for low-frequency
analog audio—not digital signals. As a result,
microphone cables are not suitable for DMX, as they
degrade the DMX signal, reducing the maximum cable
length and increasing the chances of flickering.

DMX controllers usually only feature a DMX Out
connector (female), while DMX receivers have both
DMX In (male) and DMX Out (female) connectors for
daisy-chaining—that is, two DMX connectors.

• DMX Out: Female connector
• DMX In: Male connector

In both XLR-3 and XLR-5, and in both male and female
connectors, the pinout is as follows:

• Pin 1: Singal-Common, this connects to the cable
screen.

• Pin 2: Data – (Also called ‘B’)
• Pin 3: Data + (Also called ‘A’)

Cable
The DMX cable screen must be connected to the pin 1
of the XLR-3 or XLR-5 connector and not to its shell. Do
not connect the cable screen to the connector shell.

Use only twister pair cable to carry the DMX signal.

Do not use microphone cable, as it has been designed
to carry low-frequency signals, and it will degrade the
DMX signal, increasing the chances of spurious flickers
on the LED fixtures.

 6.2 DMX Pinout

DMX In (Male) DMX Out (Female) Pinout (Male and Female)

XLR-3

• Pin 1: Signal Common
• Pin 2: Data – (B)
• Pin 3: Data + (A)

XLR-5

18 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
http://www.inacks.com/

IS3715 I2C DMX Controller

 7 Firmware Examples

 7.1 Arduino Code Example
Example Reference Code
ISXMPL3715ex2

Objective of this example
Demonstrate how to write a program for the IS3715 I2C DMX Controller using Arduino.

Required Material
• Kappa3715Ard Board (INACKS evaluation board featuring the IS3715)
• Arduino UNO Board
• DMX-compatible light fixture

Setup
Flash the Arduino UNO with the provided code, connect the Kappa3715 to the Arduino UNO, and attach a DMX light to
validate its operation.

How it works
The Arduino code reads the analog value from the potentiometer on the Kappa3715Ard board. This reading is scaled to
a value from 0 to 255, which corresponds to the valid range for a DMX channel. The scaled value is then written to
IS3715 register 1, which controls DMX Channel 1.

Other
Download the example code at: https://inacks.com/is3715

Find Kappa3715Ard product information at: https://inacks.com/kappa3715ard

/*
 * This example works with the Evaluation Board Kappa3715,
 * which features an IS3715-I2C DMX Controller chip.
 * The Arduino reads a potentiometer connected to 3.3 V on pin A0,
 * scales the value to a DMX range (0–255), and writes it to the IS3715,
 * which continuously transmits DMX data.
 * For more information, visit www.inacks.com
 */
#include <Wire.h>

// IS3715 Memory Map Registers:
#define DMX_CH1 1
#define DMX_CH2 2
#define DMX_CH3 3
// ...
#define DMX_CH512 512
#define CHIP_ID 513
#define CHIP_REV 514

// Constants:
#define I2C_DEVICE_ADDRESS 21
#define CHIP_ID_VALUE 21

// This routine writes a dmxValue to the specified memory address of
// the IS3715 memory map.
void writeIS3715Register(uint16_t address, uint8_t dmxValue) {
 Wire.beginTransmission(I2C_DEVICE_ADDRESS);

 // Send the 16-bit memory address (high byte first, then low byte).
 Wire.write((address >> 8) & 0xFF);
 Wire.write(address & 0xFF);

 // Send the 8-bit data value
 Wire.write(dmxValue);

 Wire.endTransmission();
}

// Read one byte from the specified register address in the IS3715 memory map.
uint8_t readIS3715Register(uint16_t holdingRegisterAddress) {
 uint8_t result; // Variable to store the read data.

19 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
https://inacks.com/kappa3715ard
https://inacks.com/is3715
http://www.inacks.com/

IS3715 I2C DMX Controller

 Wire.beginTransmission(I2C_DEVICE_ADDRESS);

 // Send the 16-bit memory address (high byte first, then low byte).
 Wire.write((holdingRegisterAddress >> 8) & 0xFF);
 Wire.write(holdingRegisterAddress & 0xFF);
 // Send a repeated START condition (no STOP)
 Wire.endTransmission(false);
 // Request 1 byte from the IS3715.
 Wire.requestFrom(I2C_DEVICE_ADDRESS, 1);
 result = Wire.read();
 return result;
}

void setup() {
 uint16_t chipID, chipRev;

 // Initialize the I2C interface
 Wire.begin();
 // Initialize the serial port for debug output
 Serial.begin(9600);

 // Detect the chip:
 chipID = readIS3715Register(CHIP_ID);
 chipRev = readIS3715Register(CHIP_REV);
 if (chipID == CHIP_ID_VALUE) {
 Serial.println("IS3715 Chip detected on I2C!");
 Serial.print("Chip ID: "); Serial.println(chipID);
 Serial.print("Chip Rev: "); Serial.println(chipRev);
 }
 else {
 Serial.print("ERROR: IS3715 Chip NOT detected on I2C!");
 }
}

void loop() {
 // Read the potentiometer (0–3.3V) on analog pin A0
 uint16_t potValue = analogRead(A0);

 // Scale the analog reading to 0–255 (DMX value range)
 uint8_t dmxValue = map(potValue, 0, 678, 0, 255);
 Serial.print("Potentiometer value: ");
 Serial.println(dmxValue);

 // Write the scaled DMX value into DMX channel 1 register
 writeIS3715Register(DMX_CH1, dmxValue);
}

20 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
http://www.inacks.com/

IS3715 I2C DMX Controller

 7.2 STM32 Code Example
Example Reference Code
ISXMPL3715ex3

Objective of this example
Demonstrate how to write a program for the IS3715 I2C DMX Controller using STM32 Cube IDE.

Required Material
• Kappa3715Ard Board (INACKS evaluation board featuring the IS3715)
• STM32 Nucleo-C071RB
• DMX-compatible light fixture

Setup
Download the ISXMPL3715ex3 from https://inacks.com/is3715 and flash it to the Nucleo-C071RB Board, connect the
Kappa3715 to the Nucleo-C071RB, and attach a DMX light to validate its operation.

How it works
The CubeIDE code continuously increments the variable dmxChannel1Value by 1. This value is written to register
address 1 of the IS3715, which causes the DMX channel value to increase continuously.

Other
Download the example code at: https://inacks.com/is3715

Find Kappa3715Ard product information at: https://inacks.com/kappa3715ard

Attention
The following code is an extraction of the relevant parts of the CubeIDE project.

Pasting this code directly into CubeIDE will not work, as all the CubeIDE libraries and extra functions from its HAL
libraries are omitted for pedagogical purposes.

Download the full CubeIDE project or paste this code into the appropriate sections of a CubeIDE project.

#include <stdio.h>

// IS3715 Memory Map Registers:
#define CHIP_ID 513
#define CHIP_REV 514

// This variable stores the data of the DMX Channel 1:
uint8_t dmxChannel1Value;

/**
 * @brief This routine reads a single register from the IS3715 memory map.
 * @param registerAdressToRead: Address in the IS3715 memory map to be read.
 * @retval Value stored at the registerAdressToRead register address.
 */
uint8_t readIS3715Register(uint16_t registerAdressToRead) {

uint8_t readResult = 0;
uint8_t IS3715_I2C_Chip_Address;

 IS3715_I2C_Chip_Address = 0x15; // IS3715 I2C address is 0x15 (7-bit).
 // The STM32 HAL I2C library requires the I2C address to be shifted left by one bit.
 // Let's shift the IS3715 I2C address accordingly:
 IS3715_I2C_Chip_Address = IS3715_I2C_Chip_Address << 1;

 HAL_I2C_Mem_Read(&hi2c1, IS3715_I2C_Chip_Address, registerAdressToRead, I2C_MEMADD_SIZE_16BIT,
&readResult, 1, 500);

 return readResult;
}

/**
 * @brief Reads a single register from the IS3715 memory map.
 * @param registerAdressToRead: Address in the IS3715 memory map to be read.
 * @retval Value stored at the registerAdressToRead register address.
 */
void writeIS3715Register(uint16_t registerAdressToWrite, uint8_t value) {
 uint8_t IS3715_I2C_Chip_Address; // I2C address of IS3715 chip (7-bit).
 IS3715_I2C_Chip_Address = 0x15; // IS3715 I2C address is 0x15 (7-bit).
 // STM32 HAL expects 8-bit address, so shift left by 1:
 IS3715_I2C_Chip_Address = IS3715_I2C_Chip_Address << 1;

 HAL_I2C_Mem_Write(&hi2c1, IS3715_I2C_Chip_Address, registerAdressToWrite,
I2C_MEMADD_SIZE_16BIT, &value, 1, 500);

21 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
https://inacks.com/kappa3715ard
https://inacks.com/is3715
https://inacks.com/is3715
http://www.inacks.com/

IS3715 I2C DMX Controller

}

// This function is required to make printf work over the Serial port.
// It is never called directly in the code — printf internally uses it
int _write(int file, char *ptr, int len) {

HAL_UART_Transmit(&huart2, (uint8_t*)ptr, len, HAL_MAX_DELAY);
 return len;
}

int main(void) {
HAL_StatusTypeDef chipDetected = HAL_I2C_IsDeviceReady(&hi2c1, (0x15 << 1), 3, 200);

if (chipDetected == HAL_OK) {
 printf("IS3715 Detected!\n");
}
else {
 printf("ERROR: IS3715 not detected. Program stops now.\n");
 while(1);
}

while (1) {
 writeIS3715Register(1, dmxChannel1Value);
 dmxChannel1Value++;
 HAL_Delay(10);
}

}

22 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
http://www.inacks.com/

IS3715 I2C DMX Controller

 7.3 Raspberry Pi Python Example
Example Reference Code
ISXMPL3715ex4

Objective of this example
Demonstrate how to write a program in Python for the IS3715 I2C DMX Controller in Raspberry Pi.

Required Material
• Kappa3715Rasp Board (INACKS evaluation board featuring the IS3715)
• Raspberry Pi B Board
• DMX-compatible light fixture

Setup
Connect the Kappa371Rasp to the Raspberry Pi, and attach a DMX light to the Kappa371Rasp. Run the command sudo
i2cdetect -y 1 to verify that the IS3715 is detected. Finally, execute example with sudo.

How it works
The Python code continuously increments the DMX_Values[1] by 1. This value is written to register address 1 of the
IS3715, which causes the DMX channel value to increase continuously.

Other
Download the example code at: https://inacks.com/is3715

Find Kappa3715Ard product information at: https://inacks.com/kappa3715rasp

Example of chip detection on the I2C-Serial interface
To verify that the Raspberry Pi is properly connected to the IS3715, scan the I2C-Serial interface for connected devices.

The IS3715 should appear at address 21 (0x15)

Run:

sudo i2cdetect -y 1

The command output should show a detected device at 21 (0x15)

pi@raspberrypi:~ $ sudo i2cdetect -y 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- 15 -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

Python Code
"""
This example continuously increments the value of DMX Channel 1.
When the value reaches 255, it rolls over to 0.

This example uses the Kappa3715 Evaluation Board featuring the IS3715.

Verify that your Raspberry Pi can see the IS3715 on the I2C Serial Interface:
$ sudo i2cdetect -y 1
The device should appear at address 0x15.

Run this script with sudo:
$ sudo python ISXMPL3715ex4-IS3715_RaspberryPi_Example.py

For more information, visit www.inacks.com
"""

from smbus2 import SMBus, i2c_msg
import time

I2C_BUS = 1 # Use 1 for most Raspberry Pi models
I2C_DEVICE_ADDRESS = 21 # I2C device address of the IS3715

23 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
https://inacks.com/kappa3715rasp
https://inacks.com/is3715
http://www.inacks.com/

IS3715 I2C DMX Controller

IS3715 Memory Map Addresses:
CHIP_ID = 513
CHIP_REV = 514

def write_register(start_register, data_bytes):
 """
 Write a block of data starting at a 16-bit register address.

 :param start_register: The 16-bit register address to start writing to.
 :param data_bytes: A list of bytes to write.
 """
 high_addr = (start_register >> 8) & 0xFF # High byte of 16-bit address
 low_addr = start_register & 0xFF # Low byte of 16-bit address
 with SMBus(I2C_BUS) as bus:
 # Send 16-bit address followed by data bytes
 msg = i2c_msg.write(I2C_DEVICE_ADDRESS, [high_addr, low_addr] + data_bytes)
 bus.i2c_rdwr(msg)

def read_registers(start_register, length):
 """
 Read a block of data starting at a 16-bit register address.

 :param start_register: The 16-bit register address to start reading from.
 :param length: Number of bytes to read.
 :return: A list of bytes read from the device.
 """
 high_addr = (start_register >> 8) & 0xFF # High byte of 16-bit address
 low_addr = start_register & 0xFF # Low byte of 16-bit address
 with SMBus(I2C_BUS) as bus:
 # First send the 16-bit register address (write without stop / repeated start)
 write_msg = i2c_msg.write(I2C_DEVICE_ADDRESS, [high_addr, low_addr])
 # Then read the requested number of bytes
 read_msg = i2c_msg.read(I2C_DEVICE_ADDRESS, length)
 bus.i2c_rdwr(write_msg, read_msg)
 return list(read_msg)

Detect the IS3715 on the I2C bus
print("Reading CHIP_ID register...")
chip_id_value = read_registers(CHIP_ID, 1) # Read the chip ID
chip_rev_value = read_registers(CHIP_REV, 1) # Read the chip revision
print "CHIP_ID: ", chip_id_value
print "CHIP_REV: ", chip_rev_value

Verify if the chip ID matches expected value (21)
if chip_id_value[0] == 21:
 print("IS3715 Detected!")
else:
 print("ERROR: IS3715 not detected!")

Initialize the DMX array
DMX_Values = [0] * 513 # 0 to 512
DMX_Channel = 1 # We will increment channel 1

while True:
 # Print the current DMX value being written to channel 1
 print "Writing on DMX Channel", DMX_Channel, "value", DMX_Values[1]

 # Write the entire DMX memory map starting from start code (address 0)
 write_register(0, DMX_Values)

 # Increment the DMX channel value, rollover after 255
 DMX_Values[DMX_Channel] = DMX_Values[DMX_Channel] + 1
 if DMX_Values[DMX_Channel] > 255:
 DMX_Values[DMX_Channel] = 0

24 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
http://www.inacks.com/

IS3715 I2C DMX Controller

 8 Mechanical

25 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
http://www.inacks.com/

IS3715 I2C DMX Controller

26 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
http://www.inacks.com/

IS3715 I2C DMX Controller

Content
 1 Electrical Specification.. 2

 2 Detailed Description..3
 2.1 IS3715 Description... 3
 2.2 Usage... 5

 3 About DMX.. 5

 4 Pin Description..6
 4.1 TX Pin... 6
 4.2 SYNC Pin... 6
 4.3 SCL and SDA Pins... 7
 4.4 I2CSPD Pin.. 7

 5 Memory Map Description.. 7
 5.1 DMX_Chx Registers... 9

 6 I2C Description.. 10
 6.1 Highlights.. 10
 6.2 Single Byte Write.. 11
 6.3 Multiple Byte Write.. 12
 6.4 Single Byte Read.. 13
 6.5 Multiple Byte Read... 14

 7 Hardware Examples.. 15
 7.1 DMX Controller... 15

 8 Firmware Examples.. 18

 9 Mechanical.. 19

Content.. 21

27 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
http://www.inacks.com/

IS3715 I2C DMX Controller

Appendix

Revision History

Document Revision

Date Revision Code Description

September 2025 ISDOC143A - Initial Release

Chip Revision
Chip Revision can be found in the CHIP_REV register of the memory map.

Date Revision Code Description

September 2025 0 - Initial Release

Documentation Feedback
Feedback and error reporting on this document are very much appreciated. Please indicate the code or title of the
document.

Sales Contact
For special order requirements, large volume orders, or scheduled orders, please contact our sales department at:

Customization
INACKS can develop new products or customize existing ones to meet specific client needs. Please contact our
engineering department at:

Trademarks
This company and its products are developed independently and are not affiliated with, endorsed by, or associated with
any official protocol or standardization entity. All trademarks, names, and references to specific protocols remain the
property of their respective owners.

28 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
http://www.inacks.com/

IS3715 I2C DMX Controller

Disclaimer
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, INACKS does not give any
representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. INACKS takes no
responsibility for the content in this document if provided by an
information source outside of INACKS.

In no event shall INACKS be liable for any indirect, incidental, punitive,
special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, INACKS’s aggregate and cumulative liability towards
customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of
INACKS.

Right to make changes — INACKS reserves the right to make changes
to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice.
This document supersedes and replaces all information supplied prior to
the publication hereof.

Suitability for use — INACKS products are not designed, authorized or
warranted to be suitable for use in life support, life-critical or safety-
critical systems or equipment, nor in applications where failure or
malfunction of an INACKS product can reasonably be expected to result
in personal injury, death or severe property or environmental damage.
INACKS and its suppliers accept no liability for inclusion and/or use of
INACKS products in such equipment or applications and therefore such
inclusion and/or use is at the customer’s own risk.

Quick reference data — The Quick reference data is an extract of the
product data given in the Limiting values and Characteristics sections of
this document, and as such is not complete, exhaustive or legally
binding.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. INACKS makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using INACKS products, and INACKS accepts
no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the
INACKS product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide
appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

INACKS does not accept any liability related to any default, damage,
costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using
INACKS products in order to avoid a default of the applications and the
products or of the application or use by customer’s third party
customer(s). INACKS does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined
in the Absolute Maximum Ratings System of IEC 60134) will cause
permanent damage to the device. Limiting values are stress ratings only
and (proper) operation of the device at these or any other conditions
above those given in the Recommended operating conditions section (if
present) or the Characteristics sections of this document is not
warranted. Constant or repeated exposure to limiting values will
permanently and irreversibly affect the quality and reliability of the
device.

Terms and conditions of commercial sale — INACKS products are sold
subject to the general terms and conditions of commercial sale, as
published at http://www.inacks.com/comercialsaleterms, unless
otherwise agreed in a valid written individual agreement. In case an
individual agreement is concluded only the terms and conditions of the
respective agreement shall apply. INACKS hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of INACKS products by customer.

No offer to sell or license — Nothing in this document may be interpreted
or construed as an offer to sell products that is open for acceptance or

the grant, conveyance or implication of any license under any copyrights,
patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Non-automotive qualified products — This INACKS product is not
suitable for automotive use. It is neither qualified nor tested in
accordance with automotive testing or application requirements. INACKS
accepts no liability for inclusion and/or use of non-automotive qualified
products in automotive equipment or applications.

Protocol Guidance Disclaimer: The information provided herein regarding
the protocol is intended for guidance purposes only. While INACKS strive
to provide accurate and up-to-date information, this content should not
be considered a substitute for official protocol documentation. It is the
responsibility of the client to consult and adhere to the official protocol
documentation when designing or implementing systems based on this
protocol.

INACKS make no representations or warranties, either expressed or
implied, as to the accuracy, completeness, or reliability of the information
contained in this document. INACKS shall not be held liable for any
errors, omissions, or inaccuracies in the information or for any user’s
reliance on the information.

The client is solely responsible for verifying the suitability and compliance
of the provided information with the official protocol standards and for
ensuring that their implementation or usage of the protocol meets all
required specifications and regulations. Any reliance on the information
provided is strictly at the user’s own risk.

Certification and Compliance Disclaimer: Please be advised that the
product described herein has not been certified by any competent
authority or organization responsible for protocol standards. INACKS do
not guarantee that the chip meets any specific protocol compliance or
certification standards.

It is the responsibility of the client to ensure that the final product
incorporating this product is tested and certified according to the relevant
protocol standards before use or commercialization. The certification
process may result in the product passing or failing to meet these
standards, and the outcome of such certification tests is beyond our
control.

INACKS disclaim any liability for non-compliance with protocol standards
and certification failures. The client acknowledges and agrees that they
bear sole responsibility for any legal, compliance, or technical issues that
arise due to the use of this product in their products, including but not
limited to the acquisition of necessary protocol certifications.

29 / 29 ISDOC143A, Revised September 2025
Submit Feedback – www.inacks.com

http://www.inacks.com/contact
http://www.inacks.com/

	IS3715: I2C DMX512 Controller
	1 Electrical Specification
	2 Detailed Description
	2.1 IS3715 Description
	2.2 Usage
	2.3 I2C Timing vs DMX Timing

	3 Pin Description
	3.1 TX Pin
	3.2 SYNC Pin
	3.3 SCL and SDA Pins
	3.4 I2CSPD Pin

	4 Memory Map Description
	4.1 DMX_Chx Registers
	4.2 CHIP_ID Registers
	4.3 CHIP_REV Registers

	5 I2C Description
	5.1 Highlights
	5.2 Single Byte Write
	5.3 Multiple Byte Write
	5.4 Single Byte Read
	5.5 Multiple Byte Read

	6 Hardware Examples
	6.1 DMX Controller
	6.2 DMX Pinout

	7 Firmware Examples
	7.1 Arduino Code Example
	7.2 STM32 Code Example
	7.3 Raspberry Pi Python Example

	8 Mechanical
	Content
	Appendix
	Revision History
	Document Revision
	Chip Revision

	Documentation Feedback
	Sales Contact
	Customization
	Trademarks
	Disclaimer

